Project description:The retinoblastoma tumor suppressor protein (Rb) regulates early G1 phase checkpoints, including the DNA damage response, as well as cell cycle exit and differentiation. The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 partially inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, resulting in release of E2F transcription factors. However, this model remains largely unproven biochemically and the biologically active form(s) of Rb remains unknown. Here we find that Rb is un-phosphorylated in G0 cells and becomes exclusively mono-phosphorylated throughout all of early G1 phase by cyclin D:Cdk4/6. Early G1 phase mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but each shows a preferential binding pattern to specific E2F1-4 transcription factors. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by a quantum hyper-phosphorylation (>12 phosphates/Rb). Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription. In contrast, a non-phosphorylatable ?Cdk-Rb allele was non-functional for regulating a DNA damage response, but functional for driving cell cycle exit and differentiation during myogenesis. These observations fundamentally change our understanding of G1 cell cycle progression and show that there is no progressive multi-phosphorylation or hypo-phosphorylation inactivation of Rb during early G1 phase by cyclin D:Cdk4/6. Instead, cyclin D:Cdk4/6 generates functionally active, mono-phosphorylated Rb that is the only Rb isoform present in cells during early G1 phase. Global transcriptional analysis of murine embryonic fibroblasts (MEFs) with conditional deletion of the endogenous RB gene by treatment with cell permeable TAT-Cre. Comparison to unaltered MEFs and MEFs with physiological level of exogenous wildtype or phospho-mutant RB expressed at time of RB gene deletion.
Project description:Studying DNA damage-induced senescence, we observed a similar phenotype upon CDK4/6 inhibition in breast cancer cells. We used RNA sequencing to investigate the gene expression profile of MCF7 cells upon CDK4/6 inhibition five days after exposure.
Project description:The length of the G1 phase in the cell cycle shows significant variability in different cell types and tissue types. To gain insights into the control of G1 length, we generated an E2F activity reporter that captures free E2F activity after dissociation from Rb sequestration and followed its kinetics of activation at the single-cell level, in real time. Our results demonstrate that its activity is precisely coordinated with S phase progression. Quantitative analysis indicates that there is a pre-S phase delay between E2F transcriptional dynamic and activity dynamics. This delay is variable among different cell types and is strongly modulated by the cyclin D/CDK4/6 complex activity through Rb phosphorylation. Our findings suggest that the main function of this complex is to regulate the appropriate timing of G1 length.
Project description:Cyclin D3 is critical hematopoiesis and loss of cyclin D3 leads to resistance to transformation of bone marrow progenitors by Notch1-IC. We used a small molecule targeting cyclin D3:CDK4/6 activity to study whether its inhibition is an effective therapeutic strategy. We analyzed T-ALL lines in vitro with PD-0332991 or vehicle control to determine genes affected by the drug. CEM, Jurkat, DND41, and CUTL-1 cell lines were treated with 1 uM PD-0332991 or DMSO for 15 hours prior to RNA extraction and hybridization to Human Genome U133 Plus 2.0 Affymetrix arrays.
Project description:The H3K27me2/me3 histone demethylase KDM6B is over-expressed in neuroblastoma and is essential to neuroblastoma cell survival. While the KDM6B inhibitor, GSK-J4, has shown activity in in vitro and in vivo preclinical models, the mechanism of action remains poorly defined. We demonstrate that genetic and pharmacologic inhibition of KDM6B downregulates the pRB-E2F transcriptome and MYCN expression. Chemical genetic analyses show that high expression of the E2F transcriptome is positively correlated with sensitivity of cancer cells to GSK-J4. Mechanistically, inhibition of KDM6B activity 1) reduces the chromatin accessibility of E2F target genes and MYCN, 2) selectively leads to an increase of H3K27me3 but a decrease of the enhancer mark H3K4me1 at the CTCF and BORIS binding sites, which may, consequently, disrupt the long-range chromatin interaction of MYCN and E2F target genes, and 3) phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout confers neuroblastoma cell resistance to both palbociclib and GSK-J4. A gene signature targeted by KDM6B inhibition is associated with poor survival of patients with neuroblastoma regardless of the MYCN status. These data indicate that KDM6B activity promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma.
Project description:The H3K27me2/me3 histone demethylase KDM6B is over-expressed in neuroblastoma and is essential to neuroblastoma cell survival. While the KDM6B inhibitor, GSK-J4, has shown activity in in vitro and in vivo preclinical models, the mechanism of action remains poorly defined. We demonstrate that genetic and pharmacologic inhibition of KDM6B downregulates the pRB-E2F transcriptome and MYCN expression. Chemical genetic analyses show that high expression of the E2F transcriptome is positively correlated with sensitivity of cancer cells to GSK-J4. Mechanistically, inhibition of KDM6B activity 1) reduces the chromatin accessibility of E2F target genes and MYCN, 2) selectively leads to an increase of H3K27me3 but a decrease of the enhancer mark H3K4me1 at the CTCF and BORIS binding sites, which may, consequently, disrupt the long-range chromatin interaction of MYCN and E2F target genes, and 3) phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout confers neuroblastoma cell resistance to both palbociclib and GSK-J4. A gene signature targeted by KDM6B inhibition is associated with poor survival of patients with neuroblastoma regardless of the MYCN status. These data indicate that KDM6B activity promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma.
Project description:The H3K27me2/me3 histone demethylase KDM6B is over-expressed in neuroblastoma and is essential to neuroblastoma cell survival. While the KDM6B inhibitor, GSK-J4, has shown activity in in vitro and in vivo preclinical models, the mechanism of action remains poorly defined. We demonstrate that genetic and pharmacologic inhibition of KDM6B downregulates the pRB-E2F transcriptome and MYCN expression. Chemical genetic analyses show that high expression of the E2F transcriptome is positively correlated with sensitivity of cancer cells to GSK-J4. Mechanistically, inhibition of KDM6B activity 1) reduces the chromatin accessibility of E2F target genes and MYCN, 2) selectively leads to an increase of H3K27me3 but a decrease of the enhancer mark H3K4me1 at the CTCF and BORIS binding sites, which may, consequently, disrupt the long-range chromatin interaction of MYCN and E2F target genes, and 3) phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout confers neuroblastoma cell resistance to both palbociclib and GSK-J4. A gene signature targeted by KDM6B inhibition is associated with poor survival of patients with neuroblastoma regardless of the MYCN status. These data indicate that KDM6B activity promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma.
Project description:Most E2F-binding sites repress transcription through the recruitment of Retinoblasoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression.
Project description:The retinoblastoma tumor suppressor protein (Rb) regulates early G1 phase checkpoints, including the DNA damage response, as well as cell cycle exit and differentiation. The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 partially inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, resulting in release of E2F transcription factors. However, this model remains largely unproven biochemically and the biologically active form(s) of Rb remains unknown. Here we find that Rb is un-phosphorylated in G0 cells and becomes exclusively mono-phosphorylated throughout all of early G1 phase by cyclin D:Cdk4/6. Early G1 phase mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but each shows a preferential binding pattern to specific E2F1-4 transcription factors. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by a quantum hyper-phosphorylation (>12 phosphates/Rb). Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription. In contrast, a non-phosphorylatable ?Cdk-Rb allele was non-functional for regulating a DNA damage response, but functional for driving cell cycle exit and differentiation during myogenesis. These observations fundamentally change our understanding of G1 cell cycle progression and show that there is no progressive multi-phosphorylation or hypo-phosphorylation inactivation of Rb during early G1 phase by cyclin D:Cdk4/6. Instead, cyclin D:Cdk4/6 generates functionally active, mono-phosphorylated Rb that is the only Rb isoform present in cells during early G1 phase.