RSC Regulates Nucleosome Positioning at Pol II Genes and Density at Pol III Genes
Ontology highlight
ABSTRACT: Nucleosomes restrict the access of transcription factors to chromatin. RSC is a SWI/SNF-family chromatin-remodeling complex from yeast that repositions and ejects nucleosomes in vitro. Here, we examined these activities and their importance in vivo. We utilized array-based methods to examine nucleosome occupancy and positioning at more than 200 locations in the genome following the controlled destruction of the catalytic subunit of RSC, Sth1. Loss of RSC function caused pronounced and general reductions in transcription from Pol I, II, and III genes. At Pol III genes, Sth1 loss conferred a general gain in nucleosome density and an accompanying reduction in RNA Pol III occupancy. In contrast, we observed primarily single nucleosome changes, including movement, at Pol II promoters. Importantly, a greater number of changes were observed near the transcription start sites of RSC-occupied promoters than non-occupied promoters. These changes are distinct from those due to general loss of transcription. Thus, RSC action affects both nucleosome density and positioning in vivo, but applies these remodeling modes differently at Pol II and Pol III genes. Keywords: ChIP-chip, nucleosome, mononucleosome, RSC, transcription
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE8862 | GEO | 2007/12/01
SECONDARY ACCESSION(S): PRJNA102223
REPOSITORIES: GEO
ACCESS DATA