5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) increase CREB1 binding to the C/EBP half-site GCAA
Ontology highlight
ABSTRACT: In human and mouse stem cells and brain, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) can occur outside of CG dinucleotides. Using protein binding microarrays (PBMs) containing 60-mer DNA probes, we evaluated the effect of 5mC and 5hmC on one DNA strand on the double-stranded DNA binding of the mouse B-ZIP transcription factors (TFs) CREB1, ATF1, and JUND. 5mC inhibited CREB1 binding to the canonical CRE half-site |GTCA, but increased binding to the C/EBP half-site |GCAA. 5hmC inhibited CREB1 binding to all 8-mers except TGAT|GCAA, where binding is enhanced. We observed similar DNA binding patterns with the closely related TF: ATF1. In contrast, both 5mC and 5hmC inhibited binding of JUND. These results identify new DNA sequences that are well-bound by CREB1 and ATF1 only when they contain 5mC or 5hmC. Analysis of two x-ray structures examines the consequences of 5mC and 5hmC on DNA binding by CREB and FOS|JUN.
ORGANISM(S): Mus musculus synthetic construct
PROVIDER: GSE88897 | GEO | 2016/10/19
SECONDARY ACCESSION(S): PRJNA349036
REPOSITORIES: GEO
ACCESS DATA