Whole genome bisulfite sequencing of hdp1-1 and hdp2-1and other relative mutants (Col-0 background)
Ontology highlight
ABSTRACT: Using whole genome bisulfite sequencing to provide single-base resulution of DNA methylation status in 35S-SUC WT, hdp1-1 and hdp2-1, mbd7, idm1, and hdp2mbd7 double mutants
Project description:Using whole genome bisulfite sequencing to provide single-base resulution of DNA methylation status in 35S-SUC WT, hdp1-1 and hdp2-1, mbd7, idm1, and hdp2mbd7 double mutants
Project description:In eukaryotes, heterochromatin is characterized by numerous epigenetic marks, including DNA methylation. Spreading of these marks into nearby active genes must be avoided in order to maintain appropriate gene expression. Here, we uncover Arabidopsis Methyl-CpG-Binding Domain 7 (MBD7) and Increased DNA Methylation 3 (IDM3) as anti-silencing factors that prevent transgene repression and genome-wide DNA hypermethylation. MBD7 preferentially binds to highly methylated, CG-dense regions associated with non-CG methylation and physically associates with other anti-silencing factors, including the histone acetyltransferase IDM1, IDM2, and IDM3. IDM1 and IDM2 were previously shown to facilitate active DNA demethylation by the 5-methylcytosine DNA glycosylase/lyase ROS1. Thus, MBD7 tethers the IDM proteins to methylated DNA, which enables the function of DNA demethylases that in turn establish chromatin boundaries and limit DNA methylation Using MethylC-Seq to provide single-base resolution of DNA methylation status in WT and idm3-1, mbd7-1 mutants Whole genome methylation maps of mbd7-1, idm3-1 and WT (all three are from 35S-SUC transgene background) were generated using BS-seq
Project description:In eukaryotes, heterochromatin is characterized by numerous epigenetic marks, including DNA methylation. Spreading of these marks into nearby active genes must be avoided in order to maintain appropriate gene expression. Here, we uncover Arabidopsis Methyl-CpG-Binding Domain 7 (MBD7) and Increased DNA Methylation 3 (IDM3) as anti-silencing factors that prevent transgene repression and genome-wide DNA hypermethylation. MBD7 preferentially binds to highly methylated, CG-dense regions associated with non-CG methylation and physically associates with other anti-silencing factors, including the histone acetyltransferase IDM1, IDM2, and IDM3. IDM1 and IDM2 were previously shown to facilitate active DNA demethylation by the 5-methylcytosine DNA glycosylase/lyase ROS1. Thus, MBD7 tethers the IDM proteins to methylated DNA, which enables the function of DNA demethylases that in turn establish chromatin boundaries and limit DNA methylation Using MethylC-Seq to provide single-base resolution of DNA methylation status in WT and idm3-1, mbd7-1 mutants
Project description:In eukaryotes, heterochromatin is characterized by numerous epigenetic marks, including DNA methylation. Spreading of these marks into nearby active genes must be avoided in order to maintain appropriate gene expression. Here, we uncover Arabidopsis Methyl-CpG-Binding Domain 7 (MBD7) and Increased DNA Methylation 3 (IDM3) as anti-silencing factors that prevent transgene repression and genome-wide DNA hypermethylation. MBD7 preferentially binds to highly methylated, CG-dense regions associated with non-CG methylation and physically associates with other anti-silencing factors, including the histone acetyltransferase IDM1, IDM2, and IDM3. IDM1 and IDM2 were previously shown to facilitate active DNA demethylation by the 5-methylcytosine DNA glycosylase/lyase ROS1. Thus, MBD7 tethers the IDM proteins to methylated DNA, which enables the function of DNA demethylases that in turn establish chromatin boundaries and limit DNA methylation Using ChIP-seq to study the genomic targeting principle of MBD7 protein Examination of MBD7 protein binding principle using ChIP-Seq. WT and proMBD7::gMBD7::4xMYC transgenic plants were used for ChIP-seq.
Project description:In eukaryotes, heterochromatin is characterized by numerous epigenetic marks, including DNA methylation. Spreading of these marks into nearby active genes must be avoided in order to maintain appropriate gene expression. Here, we uncover Arabidopsis Methyl-CpG-Binding Domain 7 (MBD7) and Increased DNA Methylation 3 (IDM3) as anti-silencing factors that prevent transgene repression and genome-wide DNA hypermethylation. MBD7 preferentially binds to highly methylated, CG-dense regions associated with non-CG methylation and physically associates with other anti-silencing factors, including the histone acetyltransferase IDM1, IDM2, and IDM3. IDM1 and IDM2 were previously shown to facilitate active DNA demethylation by the 5-methylcytosine DNA glycosylase/lyase ROS1. Thus, MBD7 tethers the IDM proteins to methylated DNA, which enables the function of DNA demethylases that in turn establish chromatin boundaries and limit DNA methylation. Whole genome methylation maps of idm3-3, mbd7-2(CS876032) and Col-0 WT were generated using BS-seq
Project description:In eukaryotes, heterochromatin is characterized by numerous epigenetic marks, including DNA methylation. Spreading of these marks into nearby active genes must be avoided in order to maintain appropriate gene expression. Here, we uncover Arabidopsis Methyl-CpG-Binding Domain 7 (MBD7) and Increased DNA Methylation 3 (IDM3) as anti-silencing factors that prevent transgene repression and genome-wide DNA hypermethylation. MBD7 preferentially binds to highly methylated, CG-dense regions associated with non-CG methylation and physically associates with other anti-silencing factors, including the histone acetyltransferase IDM1, IDM2, and IDM3. IDM1 and IDM2 were previously shown to facilitate active DNA demethylation by the 5-methylcytosine DNA glycosylase/lyase ROS1. Thus, MBD7 tethers the IDM proteins to methylated DNA, which enables the function of DNA demethylases that in turn establish chromatin boundaries and limit DNA methylation Using ChIP-seq to study the genomic targeting principle of MBD7 protein
Project description:In eukaryotes, heterochromatin is characterized by numerous epigenetic marks, including DNA methylation. Spreading of these marks into nearby active genes must be avoided in order to maintain appropriate gene expression. Here, we uncover Arabidopsis Methyl-CpG-Binding Domain 7 (MBD7) and Increased DNA Methylation 3 (IDM3) as anti-silencing factors that prevent transgene repression and genome-wide DNA hypermethylation. MBD7 preferentially binds to highly methylated, CG-dense regions associated with non-CG methylation and physically associates with other anti-silencing factors, including the histone acetyltransferase IDM1, IDM2, and IDM3. IDM1 and IDM2 were previously shown to facilitate active DNA demethylation by the 5-methylcytosine DNA glycosylase/lyase ROS1. Thus, MBD7 tethers the IDM proteins to methylated DNA, which enables the function of DNA demethylases that in turn establish chromatin boundaries and limit DNA methylation.