A high resolution organ expression map reveals novel expression patterns and predicts cellular function
Ontology highlight
ABSTRACT: Transcriptional programs that regulate development are exquisitely controlled in space and time. Elucidating these programs that underlie development is essential to understanding the acquisition of cell and tissue identity. We present microarray expression profiles of a high resolution set of developmental time points within a single Arabidopsis root, and a comprehensive map of nearly all root cell-types. These cell-type specific transcriptional signatures often predict novel cellular functions. A computational pipeline identified dominant expression patterns that demonstrate transcriptional connections between disparate cell types. Dominant expression patterns along the root’s longitudinal axis do not strictly correlate with previously defined developmental zones, and in many cases, expression fluctuation along this axis was observed. Both robust co-regulation of gene expression and potential phasing of gene expression were identified between individual roots. Methods that combine these two sets of profiles demonstrate transcriptionally rich and complex programs that define Arabidopsis root development in both space and time. We used microarrays to profile expression of nearly all cell types in the Arabidopsis root, and to profile at high resolution, developmental time points along the root's longitudinal axis. Keywords: Cell-type specific analysis using FACS, and a developmental time course.
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE8934 | GEO | 2007/11/05
SECONDARY ACCESSION(S): PRJNA102349
REPOSITORIES: GEO
ACCESS DATA