Project description:Targeting the activation function-1 (AF-1) at the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the BAG domain of the cochaperone Bag-1L. Mutations in this domain or loss of Bag-1L abrogates AR signaling and reduces PCa growth. Correspondingly, Bag-1L protein levels increase with progression of primary prostate tumors to castration-resistant PCa, correlating inversely with patient response to abiraterone therapy. Intriguingly, BAG domain residues important for its interaction with the AR AF-1 overlap a potentially druggable pocket of this protein. Bag-1L is therefore a putative therapeutic target for the inhibition of AR AF-1 activity.
Project description:Targeting the activation function-1 (AF-1) at the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the BAG domain of the cochaperone Bag-1L. Mutations in this domain or loss of Bag-1L abrogates AR signaling and reduces PCa growth. Correspondingly, Bag-1L protein levels increase with progression of primary prostate tumors to castration-resistant PCa, correlating inversely with patient response to abiraterone therapy. Intriguingly, BAG domain residues important for its interaction with the AR AF-1 overlap a potentially druggable pocket of this protein. Bag-1L is therefore a putative therapeutic target for the inhibition of AR AF-1 activity.
Project description:Targeting the activation function-1 (AF-1) at the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the BAG domain of the cochaperone Bag-1L. Mutations in this domain or loss of Bag-1L abrogates AR signaling and reduces PCa growth. Correspondingly, Bag-1L protein levels increase with progression of primary prostate tumors to castration-resistant PCa, correlating inversely with patient response to abiraterone therapy. Intriguingly, BAG domain residues important for its interaction with the AR AF-1 overlap a potentially druggable pocket of this protein. Bag-1L is therefore a putative therapeutic target for the inhibition of AR AF-1 activity.
Project description:Targeting the activation function-1 (AF-1) domain located in the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the cochaperone Bag-1L. Mutations in the AR interaction domain or loss of Bag-1L abrogate AR signaling and reduce PCa growth. Clinically, Bag-1L protein levels increase with progression to castration-resistant PCa (CRPC) and high levels of Bag-1L in primary PCa associate with a reduced clinical benefit from abiraterone when these tumors progress. Intriguingly, residues in Bag-1L important for its interaction with the AR AF-1 are within a potentially druggable pocket, implicating Bag-1L as a potential therapeutic target in PCa.
Project description:All current clinically approved androgen deprivation therapies for prostate cancer (PCa) target the C-terminal ligand-binding domain (LBD) of the androgen receptor (AR), although the N-terminal domain (NTD) is the main regulator of AR activity. Targeting the AR NTD directly is a challenge because of its intrinsic disordered nature and the lack of secondary structure and clefts for drugs to bind. Here, we make use of the cochaperone BAG1L that functions through the NTD to develop alternative AR inhibitors. We show that BAG1L binds to a short alpha-helical region of the AR NTD and regulates AR dynamics and the expression of AR target genes. We further show that disruption of the BAG1L-AR NTD action by a small molecule 2-(4-fluorophenyl)-5-(trifluoromethyl)-1,3-benzothiazole (A4B17) downregulates AR target gene expression and blocks proliferation of AR-positive PCa cells. Targeting a cochaperone as a surrogate to the AR NTD is therefore key to developing novel AR antagonists.
Project description:Drugs that target novel surfaces on the androgen receptor (AR) and/or novel AR regulatory mechanisms are promising alternatives for the treatment of castrate-resistant prostate cancer. The 52 kDa FK506 binding protein (FKBP52) is an important positive regulator of AR in cellular and whole animal models and represents an attractive target for the treatment of prostate cancer. We used a modified receptor-mediated reporter assay in yeast to screen a diversified natural compound library for inhibitors of FKBP52-enhanced AR function. The lead compound, termed MJC13, inhibits AR function by preventing hormone-dependent dissociation of the Hsp90-FKBP52-AR complex, which results in less hormone-bound receptor in the nucleus. Assays in early and late stage human prostate cancer cells demonstrated that MJC13 inhibits AR-dependent gene expression and androgen-stimulated prostate cancer cell proliferation.