Project description:Dynamic changes in histone modifications under various physiological cues play important roles in gene transcription and cancer. Identification of new histone marks critical for cancer development is of particular importance. Here we show that, in a glucose-dependent manner, E3 ubiquitin ligase NEDD4 ubiquitinates histone H3 on lysine 23/36/37 residues, which specifically recruits histone acetyltransferase GCN5 for subsequent H3 acetylation. Genome-wide analysis of chromatin immunoprecipitation followed by sequencing reveals that NEDD4 regulates glucose-induced H3 K9 acetylation at transcription starting site and enhancer regions. Integrative analysis of ChIP-seq and microarray data sets also reveals a consistent role of NEDD4 in transcription activation and H3 K9 acetylation in response to glucose. Functionally, we show that NEDD4-mediated H3 ubiquitination, by transcriptionally activating IL1α, IL1β and GCLM, is important for tumour sphere formation. Together, our study reveals the mechanism for glucose-induced transcriptome reprograming and epigenetic regulation in cancer by inducing NEDD4-dependent H3 ubiquitination.
Project description:DNA methylation and histone lysine tri-methylation at H3K27 (H3K27me3) are the two primary epigenetic marks for transcriptional silencing essential for cell fate determination and cell lineage commitment during development1, 2. These two marks are mutually exclusive and target distinct sets of genes in the mammalian genome3. However, whether and how H3K27me3 shapes the DNA methylome remains unknown. Here, we report that the loss of H3K27me3 modification leads to increased DNA methylation at previously marked H3K27me3 sites, revealing that H3K27me3 negatively regulates DNA methylation. Genome-wide analysis of H3 ubiquitination, essential for recruitment and activation of DNA methyltransferase DNMT14, reveals the absence of H3 ubiquitination at H3K27me3 marked nucleosomes. Moreover, loss of H3K27me3 modification induces an increase in H3K18 ubiquitination at the corresponding hypermethylated loci. Importantly, we show that H3K27me3 directly inhibits UHRF1-mediated H3 ubiquitination toward nucleosomes in a defined biochemical assay. Furthermore, UHRF1 is required for the increase in DNA methylation at previously marked H3K27me3 sites in cells with abolished H3K27me3 modification. Taken together, our findings reveal a general mechanism for H3K27me3-mediated shaping of the mammalian DNA methylome via modulation of H3 ubiquitination.
Project description:DNA methylation and histone lysine tri-methylation at H3K27 (H3K27me3) are the two primary epigenetic marks for transcriptional silencing essential for cell fate determination and cell lineage commitment during development1, 2. These two marks are mutually exclusive and target distinct sets of genes in the mammalian genome3. However, whether and how H3K27me3 shapes the DNA methylome remains unknown. Here, we report that the loss of H3K27me3 modification leads to increased DNA methylation at previously marked H3K27me3 sites, revealing that H3K27me3 negatively regulates DNA methylation. Genome-wide analysis of H3 ubiquitination, essential for recruitment and activation of DNA methyltransferase DNMT14, reveals the absence of H3 ubiquitination at H3K27me3 marked nucleosomes. Moreover, loss of H3K27me3 modification induces an increase in H3K18 ubiquitination at the corresponding hypermethylated loci. Importantly, we show that H3K27me3 directly inhibits UHRF1-mediated H3 ubiquitination toward nucleosomes in a defined biochemical assay. Furthermore, UHRF1 is required for the increase in DNA methylation at previously marked H3K27me3 sites in cells with abolished H3K27me3 modification. Taken together, our findings reveal a general mechanism for H3K27me3-mediated shaping of the mammalian DNA methylome via modulation of H3 ubiquitination.
Project description:DNA methylation and histone lysine tri-methylation at H3K27 (H3K27me3) are the two primary epigenetic marks for transcriptional silencing essential for cell fate determination and cell lineage commitment during development1, 2. These two marks are mutually exclusive and target distinct sets of genes in the mammalian genome3. However, whether and how H3K27me3 shapes the DNA methylome remains unknown. Here, we report that the loss of H3K27me3 modification leads to increased DNA methylation at previously marked H3K27me3 sites, revealing that H3K27me3 negatively regulates DNA methylation. Genome-wide analysis of H3 ubiquitination, essential for recruitment and activation of DNA methyltransferase DNMT14, reveals the absence of H3 ubiquitination at H3K27me3 marked nucleosomes. Moreover, loss of H3K27me3 modification induces an increase in H3K18 ubiquitination at the corresponding hypermethylated loci. Importantly, we show that H3K27me3 directly inhibits UHRF1-mediated H3 ubiquitination toward nucleosomes in a defined biochemical assay. Furthermore, UHRF1 is required for the increase in DNA methylation at previously marked H3K27me3 sites in cells with abolished H3K27me3 modification. Taken together, our findings reveal a general mechanism for H3K27me3-mediated shaping of the mammalian DNA methylome via modulation of H3 ubiquitination.
Project description:We reported that ethylene specifically elevated acetylation of histone H3 at K14 and the non-canonical acetylation of histone H3 at K23,but not H3K9ac.Thus, we further performed Chip-sequencing of H3K9Ac, using chromatins isolated from 3-day old etiolated ein2-5 seedlings treated with ethylene or air gas.
Project description:We report that ethylene specifically elevated acetylation of histone H3 at K14 and the non-canonical acetylation of histone H3 at K23. We perform Chip-sequencing of H3K14Ac, H3K23Ac and H3K9Ac using chromatins isolated from 3-day old etiolated Col-0 seedlings treated with ethylene or air gas. Results show that ethylene specifically elevates H3K14Ac and non-canonical H3K23Ac in EIN3 targeted genes that are regulated at the transcriptional level by ethylene.