MicroRNA expression data from CIE-vapor treated mice
Ontology highlight
ABSTRACT: We examined microRNA expression profiles in amygdala (AMY), nucleus accumbens (NAC) and prefrontal cortex (PFC) of male C57BL/6J mice exposed to 4 cycles of chronic intermittent ethanol (CIE) vapor. Animals were sacrificed at 0, 8, and 120 hr following the last ethanol exposure.
Project description:We examined global gene expression profiles in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC) and Liver of male C57BL/6J mice exposed to 4 cycles of chronic intermittent ethanol (CIE) vapor. Animals were sacrificed at 0, 8, and 120 hr following the last ethanol exposure.
Project description:We examined global gene expression profiles in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC) and Liver of male C57BL/6J mice exposed to 4 cycles of chronic intermittent ethanol (CIE) vapor. Animals were sacrificed at 0, 8, and 120 hr following the last ethanol exposure. Mice were exposed to 4 cycles of intermittent vapor [4 days of 16 hours vapor/ 8 hours air] with a week between each cycle. Before entry into the vapor chambers, animals were injected with pyrazole (1 mMol/kg) and either ethanol (1.6 g/kg) or saline (controls). Animals were sacrificed at 0, 8, and 120 hr following the last ethanol exposure. The liver 0 hr control group contained 7 animals. Otherwise there were 8 animals per group (treated, control) at each time point.
Project description:Lasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol. Bioinformatics analysis of modules identified by WGCNA showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Strikingly, bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol. In particular, our identification of a potential role for Let-7 miRNAs and a Bdnf-related expression network in long-lasting expression changes after CIE may lead to future druggable gene target identification for novel intervention in AUD.
Project description:Lasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol. Bioinformatics analysis of modules identified by WGCNA showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Strikingly, bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol. In particular, our identification of a potential role for Let-7 miRNAs and a Bdnf-related expression network in long-lasting expression changes after CIE may lead to future druggable gene target identification for novel intervention in AUD.
Project description:Lasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol. Bioinformatics analysis of modules identified by WGCNA showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Strikingly, bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol. In particular, our identification of a potential role for Let-7 miRNAs and a Bdnf-related expression network in long-lasting expression changes after CIE may lead to future druggable gene target identification for novel intervention in AUD.
Project description:Lasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol. Bioinformatics analysis of modules identified by WGCNA showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Strikingly, bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol. In particular, our identification of a potential role for Let-7 miRNAs and a Bdnf-related expression network in long-lasting expression changes after CIE may lead to future druggable gene target identification for novel intervention in AUD.
Project description:Lasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol. Bioinformatics analysis of modules identified by WGCNA showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Strikingly, bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol. In particular, our identification of a potential role for Let-7 miRNAs and a Bdnf-related expression network in long-lasting expression changes after CIE may lead to future druggable gene target identification for novel intervention in AUD.
Project description:Purpose: Identify the specific transcriptome alterations in astrocytes and microglia isolated from mouse prefrontal cortex (PFC) following a chronic intermittent ethanol vapor exposure paradigm Methods: We performed RNA-sequencing on astrocytes, microglia, and total homogenate tissue isolated from the PFC of C57BL/6J mice following chronic intermittent ethanol vapor exposure Results: We identified common neuroimmune gene expression response between cell types in response to CIE, unique networks of correlated genes differentially expressed in specific cell types, along with candidate pathways, biological processes and highly connected cell-type specific genes Conclusions: This study sheds light on the cell-specific effects of chronic ethanol and provides novel molecular targets for understanding ethanol dependence
Project description:Persistent changes in brain gene expression are hypothesized to underlie thealtered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption. The interaction of CIE and oral consumption was studied with Affymetrix microarrays. Gene expression was studied in medial prefrontal cortex, nucleus accumbens, hippocampus, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain region expression networks were analyzed for ethanol-responsive gene expression, correlation with ethanol consumption and functional content using extensive bioinformatics studies.
Project description:To understand how chronic intermittent ethanol vapor exposure changes the RNA content of brain-derived extracellular vesicles, we isolated total RNA and used lncRNA/mRNA microarray analysis to examine differential expression following CIE exposure in male animals