Project description:Krüppel-like factors (KLFs) are a family of 17 transcription factors characterized by a conserved DNA-binding domain of three zinc fingers and a variable N-terminal domain responsible for recruiting cofactors. KLFs have diverse functions in stem cell biology, embryo patterning, and tissue homoeostasis. KLF1 and related family members function as transcriptional activators via recruitment of co-activators such as EP300, whereas KLF3 and related members act as transcriptional repressors via recruitment of C-terminal Binding Proteins. KLF1 directly activates the Klf3 gene via an erythroid-specific promoter. Herein, we show KLF1 and KLF3 bind common as well as unique sites within the erythroid cell genome by ChIP-seq. We show KLF3 can displace KLF1 from key erythroid gene promoters and enhancers in vivo. Using 4sU RNA labelling and RNA-seq, we show this competition results in reciprocal transcriptional outputs for >50 important genes. Furthermore, Klf3-/- mice displayed exaggerated recovery from anemic stress and persistent cell cycling consistent with a role for KLF3 in dampening KLF1-driven proliferation. We suggest this study provides a paradigm for how KLFs work in incoherent feed-forward loops or networks to fine-tune transcription and thereby control diverse biological processes such as cell proliferation.
Project description:Transcription factors of the Sp/Klf (Krüppel-like factor) family regulate biological processes such as hematopoiesis, adipogenesis, and stem cell maintenance. Here we show that Bklf or Klf3 (Basic Krüppel-like factor) represses the Klf8 (Krüppel-like Factor 8) gene in vivo. Conversely, Eklf or Klf1 (Erythroid Krüppel-like factor) activates the Klf8 gene. Klf8 is driven by two promoters, both of which contain multiple CACCC sites. Klf3 can repress Klf1-mediated activation of both promoters. Chromatin immunoprecipitation experiments confirm that Klf3 occupies both Klf8 promoters in vivo. Interestingly, in Klf3 knock-out tissue Klf1 gains access, binds, and activates both Klf8 promoters. These results demonstrate direct competition between activating and repressing Klfs in vivo. Together with previous evidence that Klf1 directly activates the Klf3 gene, the results reveal an elaborate network of cross-talk within the Klf family. The recognition of cross-regulation and potential redundancy between Klf family members is critical to the interpretation of various Klf knock-out mice and the understanding of individual Klfs in particular contexts.
Project description:Currently, predictive translation tuning of regulatory elements to the desired output of transcription factor (TF)-based biosensors remains a challenge. The gene expression of a biosensor system must exhibit appropriate translation intensity, which is controlled by the ribosome-binding site (RBS), to achieve fine-tuning of its dynamic range (i.e. fold change in gene expression between the presence and absence of inducer) by adjusting the translation level of the TF and reporter. However, existing TF-based biosensors generally suffer from unpredictable dynamic range. Here, we elucidated the connections and partial mechanisms between RBS, translation level, protein folding and dynamic range, and presented a design platform that predictably tuned the dynamic range of biosensors based on deep learning of large datasets cross-RBSs (cRBSs). In doing so, a library containing 7053 designed cRBSs was divided into five sub-libraries through fluorescence-activated cell sorting to establish a classification model based on convolutional neural network in deep learning. Finally, the present work exhibited a powerful platform to enable predictable translation tuning of RBS to the dynamic range of biosensors.
Project description:An essential questions of gene regulation is how large number of enhancers and promoters organize into gene regulatory loops. Using transcription-factor binding enrichment as an indicator of enhancer strength, we identified a portion of H3K27ac peaks as potentially strong enhancers and found a universal pattern of promoter and enhancer distribution: At actively transcribed regions of length of ∼200-300 kb, the numbers of active promoters and enhancers are inversely related. Enhancer clusters are associated with isolated active promoters, regardless of the gene's cell-type specificity. As the number of nearby active promoters increases, the number of enhancers decreases. At regions where multiple active genes are closely located, there are few distant enhancers. With Hi-C analysis, we demonstrate that the interactions among the regulatory elements (active promoters and enhancers) occur predominantly in clusters and multiway among linearly close elements and the distance between adjacent elements shows a preference of ∼30 kb. We propose a simple rule of spatial organization of active promoters and enhancers: Gene transcriptions and regulations mainly occur at local active transcription hubs contributed dynamically by multiple elements from linearly close enhancers and/or active promoters. The hub model can be represented with a flower-shaped structure and implies an enhancer-like role of active promoters.
Project description:Clustering of multiple transcription factor binding sites (TFBSs) for the same transcription factor (TF) is a common feature of cis-regulatory modules in invertebrate animals, but the occurrence of such homotypic clusters of TFBSs (HCTs) in the human genome has remained largely unknown. To explore whether HCTs are also common in human and other vertebrates, we used known binding motifs for vertebrate TFs and a hidden Markov model-based approach to detect HCTs in the human, mouse, chicken, and fugu genomes, and examined their association with cis-regulatory modules. We found that evolutionarily conserved HCTs occupy nearly 2% of the human genome, with experimental evidence for individual TFs supporting their binding to predicted HCTs. More than half of the promoters of human genes contain HCTs, with a distribution around the transcription start site in agreement with the experimental data from the ENCODE project. In addition, almost half of the 487 experimentally validated developmental enhancers contain them as well--a number more than 25-fold larger than expected by chance. We also found evidence of negative selection acting on TFBSs within HCTs, as the conservation of TFBSs is stronger than the conservation of sequences separating them. The important role of HCTs as components of developmental enhancers is additionally supported by a strong correlation between HCTs and the binding of the enhancer-associated coactivator protein Ep300 (also known as p300). Experimental validation of HCT-containing elements in both zebrafish and mouse suggest that HCTs could be used to predict both the presence of enhancers and their tissue specificity, and are thus a feature that can be effectively used in deciphering the gene regulatory code. In conclusion, our results indicate that HCTs are a pervasive feature of human cis-regulatory modules and suggest that they play an important role in gene regulation in the human and other vertebrate genomes.
Project description:Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. The Piezo1 channel mediates mechanoelectrical transduction and regulates crucial physiological processes, including vascular architecture and remodeling, cell migration, and erythrocyte volume. The identity of the membrane components that modulate Piezo1 function remain largely unknown. Using lipid profiling analyses, we here identify dietary fatty acids that tune Piezo1 mechanical response. We find that margaric acid, a saturated fatty acid present in dairy products and fish, inhibits Piezo1 activation and polyunsaturated fatty acids (PUFAs), present in fish oils, modulate channel inactivation. Force measurements reveal that margaric acid increases membrane bending stiffness, whereas PUFAs decrease it. We use fatty acid supplementation to abrogate the phenotype of gain-of-function Piezo1 mutations causing human dehydrated hereditary stomatocytosis. Beyond Piezo1, our findings demonstrate that cell-intrinsic lipid profile and changes in the fatty acid metabolism can dictate the cell's response to mechanical cues.
Project description:Transcription factors are often regarded as being comprised of a DNA-binding domain and a functional domain. The two domains are considered separable and autonomous, with the DNA-binding domain directing the factor to its target genes and the functional domain imparting transcriptional regulation. We have examined a typical Zinc Finger (ZF) transcription factor from the Krüppel-like factor (KLF) family, KLF3. This factor has an N-terminal repression domain that binds the co-repressor C-terminal binding protein (CtBP), and a DNA-binding domain composed of three classical (ZFs) at its C-terminus. We established a system to compare the genomic occupancy profile of wildtype KLF3 with two mutants affecting the N-terminal functional domain: a mutant unable to contact its cofactor CtBP and a mutant lacking the entire N-terminal domain, but retaining the ZFs intact. We used chromatin immunoprecipitation followed by sequencing (ChIP-seq) to assess binding across the genome in murine embryonic fibroblasts. Our results define the in vivo recognition site for KLF3 and the two mutants as a typical CACCC-like element. Unexpectedly, we observe that mutations in the N-terminal functional domain severely affect DNA binding. In general, both mutations reduce binding but there are also instances where binding is retained or even increased. These results provide a clear demonstration that the correct localization of transcription factors to their target genes is not solely dependent on their DNA-contact domains. This informs our understanding of how transcription factors operate and is of relevance to the design of artificial ZF proteins. ChIP-seq was performed on the three samples, KLF3, ΔDL and DBD in duplicate (biological replicates). Input samples were used as controls.
Project description:Mechanical force applied along a disulfide bond alters its rate of reduction. We here aimed at quantifying the direct effect of force onto the chemical reactivity of a sulfur-sulfur bond in contrast to indirect, e.g., steric or mechanistic, influences. To this end, we evaluated the dependency of a disulfide bond's redox potential on a pulling force applied along the system. Our QM/MM simulations of cystine as a model system take conformational dynamics and explicit solvation into account and show that redox potentials increase over the whole range of forces probed here (30-3320 pN), and thus even in the absence of a significant disulfide bond elongation (<500 pN). Instead, at low forces, dihedrals and angles, as the softer degrees of freedom are stretched, contribute to the destabilization of the oxidized state. We find physiological forces to be likely to tune the disulfide's redox potentials to an extent similar to the tuning within proteins by point mutations.
Project description:In budding yeast, the highly conserved small GTPase Cdc42 localizes to the cortex at a cell pole and orchestrates the trafficking and deposition of cell surface materials required for building a bud or mating projection (shmoo). Using a combination of quantitative imaging and mathematical modeling, we elucidate mechanisms of dynamic recycling of Cdc42 that balance diffusion. Rdi1, a guanine nucleotide dissociation inhibitor (GDI), mediates a fast recycling pathway, while actin patch-mediated endocytosis accounts for a slower one. These recycling mechanisms are restricted to the same region of the nascent bud, as both are coupled to the Cdc42 GTPase cycle. We find that a single dynamic parameter, the rate of internalization inside the window of polarized delivery, is tuned to give rise to distinct shapes of Cdc42 distributions that correlate with distinct morphogenetic fates, such as the formation of a round bud or a pointed shmoo.
Project description:Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing. Author summary As a legacy of their bacterial origin, mitochondria have retained their own genome with a unique gene expression system. All mitochondrially encoded proteins are essential components of the respiratory chain. Therefore, the mitochondrial gene expression is crucial for their iconic role as the ‘powerhouse of the cell’–ATP synthesis through oxidative phosphorylation. Consistently, defects in enzymes involved in this gene expression system are a common source of incurable inherited metabolic disorders, called mitochondrial diseases. The human mitochondrial transcription generates long polycistronic transcripts that carry information for multiple genes, so that the expression level of each gene is mainly regulated through post-transcriptional events. The polycistronic transcript first undergoes RNA processing, where individual mRNA, rRNA, and tRNA are cleaved off. However, its entire molecular mechanism remains unclear, and in particular, ‘non-canonical’ RNA processing has been poorly understood. To address this question, we studied the FASTK family proteins, emerging key mitochondrial post-transcriptional regulators. We generated different human cell lines carrying single or combined disruption of FASTKD3, FASTKD4, and FASTKD5 genes, and analyzed them using biochemical and genetic approaches. We show that the FASTK family members fine-tune the processing of both ‘canonical’ and ‘non-canonical’ mitochondrial RNA junctions.