Project description:Animals must learn through experience which foods are nutritious and should be consumed, and which are toxic and should be avoided. Enteroendocrine cells (EECs) are the principal chemosensors in the GI tract, but investigation of their role in behavior has been limited by the difficulty of selectively targeting these cells in vivo. Here we describe an intersectional genetic approach for manipulating EEC subtypes in behaving mice. We show that multiple EEC subtypes inhibit food intake but have different effects on learning. Conditioned flavor preference is driven by release of cholecystokinin whereas conditioned taste aversion is mediated by serotonin and substance P. These positive and negative valence signals are transmitted by vagal and spinal afferents, respectively. These findings establish a cellular basis for how chemosensing in the gut drives learning about food.
Project description:Cell type-specific RNA-seq to profile transcriptional changes in sorted BLA projection neurons during conditioned taste aversion learning
Project description:Feeding is an important activity for all animals providing nutrients essential for survival and reproduction. Not surprisingly, learning plays a critical role in feeding behavior through the establishment and strengthening of food preferences and aversions. That is, the integration of taste and post ingestive visceral signals in the brain results in memorial representations about the consequences associated with ingesting a particular food. For example, when ingestion of a food is followed by negative gastrointestinal consequences (e.g. nausea, sickness, or vomiting), the animal develops a conditioned taste aversion (CTA), which produces a switch from acceptance to avoidance of that and any like tasting stimulus. Despite recent advances in understanding CTA responsive intracellular signaling pathways in the amygdala, little is known about any long-term regulation of target gene expression following CTA memory consolidation and retrieval. The present study utilized oligo-nucleotide microarray to understand the genes and networks involved in Conditional Taste Aversion Behavior.
Project description:The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning.
Project description:Two independent lines of High Drinking in the Dark (HDID-1, HDID-2) mice have been bred to reach high blood alcohol levels after a short period of binge-like ethanol drinking. Male mice of both lines were shown to have reduced sensitivity to develop a taste aversion to a novel flavor conditioned by ethanol injections as compared with their unselected HS/NPT founder stock. We have subsequently developed inbred variants of each line. The current experiments established that reduced ethanol-conditioned taste aversion is also seen in the inbred variants, in both males and females. In other experiments, we asked whether HDID mice would ingest sufficient doses of ethanol to lead to a conditioned taste aversion upon retest. Different manipulations were used to elevate consumption of ethanol on initial exposure. Access to increased ethanol concentrations, to multiple tubes of ethanol, and fluid restriction to increase thirst motivation all enhanced initial drinking of ethanol. Each condition led to reduced intake the next day, consistent with a mild conditioned taste aversion. These experiments support the conclusion that one reason contributing to the willingness of HDID mice to drink to the point of intoxication is a genetic insensitivity to the aversive effects of ethanol.
Project description:To uncover novel molecules involved in taste detection, we performed a microarray-based screen for genes enriched in taste neurons. Proboscis RNA from flies homozygous for a recessive poxn null mutation was compared to RNA from heterozygous controls. Poxn mutants have a transformation of labellar gustatory chemosensory bristles into mechanosensory bristles and therefore lack most or all taste neurons. Experiment Overall Design: Proboscises of poxn70 homozygous mutant and poxn70 heterozygous mutant males (8-18 days post eclosure) were dissected, and total RNA was harvested in Trizol according to standard trizol protocol. Samples for each microarray were prepared from 164-280 proboscises. We performed 3 biological replicates for each genotype.
Project description:Taste stem/progenitor cells from the mouse posterior tongue have been recently used to generate taste bud organoids. However, the inaccessible location of the taste receptor cells is observed in conventional organoids. Here, we established a suspension culture method for fine tuning of taste bud organoid by apicobasal polarity alteration to form the accessible localization of taste receptor cells in organoid. Compared to conventional Matrigel-embedded organoids, suspension-cultured organoids showed comparable differentiation and renewal rates to those of taste buds in vivo and exhibited functional taste receptor cells and cycling progenitor cells. Accessible taste receptor cells on the outer region of taste bud organoids enabled the direct application of calcium imaging for evaluating the taste response. Moreover, suspension-cultured organoids could be genetically altered using gene editing methods. Suspension-cultured taste bud organoid harmoniously integrated with the recipient lingual epithelium; maintained the taste receptor cells and gustatory innervation capacity. Thus, we propose that suspension-cultured organoids may provide efficient model for taste research including taste bud development, regeneration and transplantation
Project description:Ghrelin is an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents. An increasing number of studies have reported that ghrelin and its identified receptor, the growth hormone secretagogue receptor 1a (GHS-R1a), produces remarkably wide and complex functions and biological effects on specific populations of neurons in central nervous system. In this study, we sought to explore the in vivo effects of acute ghrelin exposure on lateral amygdala (LA) neurons at the physiological and behavioral levels. In vivo extracellular single-unit recordings showed that ghrelin with the concentration of several nanomolars (nM) stimulated spontaneous firing of the LA neurons, an effect that was dose-dependent and could be blocked by co-application of a GHS-R1a antagonist D-Lys3-GHRP-6. We also found that D-Lys3-GHRP-6 inhibited spontaneous firing of the LA neurons in a dose-dependent manner, revealing that tonic GHS-R1a activity contributes to orchestrate the basal activity of the LA neurons. Behaviorally, we found that microinfusion of ghrelin (12 ng) into LA before training interfered with the acquisition of conditioned taste aversion (CTA) as tested at 24 h after conditioning. Pre-treatment with either purified IgG against GHS-R1a or GHS-R1a antagonist blocked ghrelin's effect on CTA memory acquisition. Ghrelin (12 ng) had no effect on CTA memory consolidation or the expression of acquired CTA memory; neither did it affect the total liquid consumption of tested rats. Altogether, our data indicated that ghrelin locally infused into LA blocks acquisition of CTA and its modulation effects on neuronal firing may be involved in this process.