Project description:To better understand the molecular basis of the anticancer effects of acyclic retinoid (ACR), a genome-wide screening was applied to identify novel targets of ACR in human hepatocellular carcinoma (HCC) cells JHH7. Gene expression profiles of JHH7 were measured at 0h, 1h and 4 hours after treatment with1 μM All-trans retinoic acid (AtRA) or 10 μM ACR. Hierarchical clustering with Ward’s method of 44,907 genes demonstrated diverse expression changes in HCC cells treated with ACR for 4h. A total of 973 differentially expressed genes in response to ACR by comparing with AtRA for 4h treatments were identified with a fold change more than 2. Then, network analysis was performed on the altered gene expression profiles using Ingenuity Pathways Analysis (IPA) program. The most highly populated networks were associated with the regulation of cell cycle and DNA replication, as ACR is well known to induce apoptosis and suppress cell proliferation in HCC cells. Moreover, networks related with amino acid metabolism, protein synthesis and lipid metabolism, such as the biological network entitled “Lipid Metabolism, Small Molecular Biochemistry, Vitamin and Mineral Metabolism” were also observed. Of interest, this network contains genes that play critical roles in controlling the development of tissues and organs such as the nuclear orphan receptor nuclear receptor subfamily 2, group F, member 2 (NR2F2), suggesting potential drug targets to prevent/treat HCC.
Project description:Gene expression profiling in non tumor lesion in the liver of patients prior to administering peretinoin was unrelated to the clinical outcome, however, gene expression profiling 8 weeks after starting peretinoin therapy significantly predicted the recurrence of HCC Peretinoin, a member of the acyclic retinoid family, is expected to be an effective chemo preventive drug for HCC.The patients had undergone curative surgical resection or radiofrequency ablation (RFA). They received 300 mg/day or 600 mg/day of peretinoin for 8 weeks and were followed up for 88 weeks with 600 mg/day of peretinoin. Hepatic gene expression profiling obtained from non tumor lesion of these patients prior to administering peretinoin and 8 weeks after starting peretinoin treatment
Project description:To better understand the molecular basis of the anticancer effects of acyclic retinoid (ACR), a genome-wide screening was applied to identify novel targets of ACR in human hepatocellular carcinoma (HCC) cells JHH7. Gene expression profiles of JHH7 were measured at 0h, 1h and 4 hours after treatment with1 μM All-trans retinoic acid (AtRA) or 10 μM ACR. Hierarchical clustering with Ward’s method of 44,907 genes demonstrated diverse expression changes in HCC cells treated with ACR for 4h. A total of 973 differentially expressed genes in response to ACR by comparing with AtRA for 4h treatments were identified with a fold change more than 2. Then, network analysis was performed on the altered gene expression profiles using Ingenuity Pathways Analysis (IPA) program. The most highly populated networks were associated with the regulation of cell cycle and DNA replication, as ACR is well known to induce apoptosis and suppress cell proliferation in HCC cells. Moreover, networks related with amino acid metabolism, protein synthesis and lipid metabolism, such as the biological network entitled “Lipid Metabolism, Small Molecular Biochemistry, Vitamin and Mineral Metabolism” were also observed. Of interest, this network contains genes that play critical roles in controlling the development of tissues and organs such as the nuclear orphan receptor nuclear receptor subfamily 2, group F, member 2 (NR2F2), suggesting potential drug targets to prevent/treat HCC. Gene expression profiles of JHH7 were measured at 0h, 1h and 4 hours after treatment with 1μM AtRA or 10 μM ACR.
Project description:This experiment series addresses the role of coactivator SRC-1/NcoA-1 for the induction of interleukin-6 (IL-6) target genes in HepG2 cells. For that purpose, HepG2 human hepatocellular carcinoma cells were manipulated to stably express an shRNA that knocks down SRC-1 expression yielding the HepG2-∆Src1 cells. Either unmanipulated HepG2 or HepG2-∆Src1 cells were then treated for various periods with IL-6. Keywords: time course, genetic modification
Project description:BackgroundHepatocellular carcinoma has a high mortality rate due to its rate of recurrence. Acyclic retinoid prevents recurrence of hepatocellular carcinoma in patients after surgical removal of their primary tumors by inducing apoptosis in hepatocellular carcinoma cells, although the molecular mechanisms of action are not understood.MethodsHuman hepatocellular carcinoma cells in culture, as well as nude mice transplanted with hepatocellular carcinoma cells and rats given with N-diethylnitrosamine were treated with acyclic retinoid. Changes in activated caspase 3 and transglutaminase 2 (TG2) levels, Sp1 cross-linking and its activities, expression of epidermal growth factor receptor, and apoptotic levels were measured.ResultsAcyclic retinoid simultaneously stimulated the activation of caspase 3, and the expression, nuclear localization and crosslinking activity of TG2, resulting in crosslinking and inactivation of the transcription factor, Sp1, thereby reducing expression of epidermal growth factor receptor and cell death in three hepatocellular carcinoma cell lines. These effects were partially restored by a caspase inhibitor, transfection of antisense TG2, restoration of functional Sp1, or an excess of epidermal growth factor. Nuclear expression of TG2 and crosslinked Sp1, as also activated caspase 3 were found in both hepatocellular carcinoma cells transplanted into nude mice and cancerous regions within the liver in N-diethylnitrosamine-induced hepatocarcinogenesis model in rats, following treatment of animals with acyclic retinoid.ConclusionsTreatment with acyclic retinoid produces a dual activation of caspase 3 and TG2 induced apoptosis of hepatocellular carcinoma cells via modification and inactivation of Sp1, resulting in reduced expression of epidermal growth factor receptor.
Project description:Focused on the cytochromes P450 (CYPs), we studied gene expression changes in mice treated with acyclic nucleoside antivirals adefovir and tenofovir. Positive control group was treated by prototypic CYP inducers phenobarbital and beta-naphthoflavone. Expression profiling with Steroltalk cDNA arrays revealed major changes in CYP mRNA expression in the inducers-treated group but only minor changes in CYP expression in the adefovir and tenofovir groups.
Project description:We undertook single cell RNA sequencing (scRNA-seq) and bioinformatic analyses to identify roles for different alveolar cell populations in retinoid metabolism and storage.