A de novo mouse model of C11orf95-RELA fusion-driven ependymoma identifies driver functions in addition to NFκB
Ontology highlight
ABSTRACT: The vast majority of supratentorial ependymomas (ST-EPNs) have few mutations other than chromosomal rearrangements on chromosome 11, most generating a fusion between C11orf95 and RELA (CR). This CR fusion can transform stem cells ex vivo rendering them oncogenic and may possess NF-κB activity, which has been proposed to be a mechanism of oncogenesis. However, it is not known whether CR is sufficient for EPN formation in vivo, and from what cell type and location. We found that CR is sufficient to form tumors from cells in the ependymal zone in mice that show many molecular and histologic similarities to human ST-EPN. Furthermore, the activation of NF-κB by this fusion protein appears minimal and not related to its oncogenic activity
Project description:Over 60% of supratentorial (ST) ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE driven ZRfus tumors by CUT&RUN, ChIP, ATAC, and RNA sequencing and compared to human ZRfus driven ependymoma. In addition to direct canonical NF-kB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with Plagl family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional co-activators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by Plagl transcription factor proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks.
Project description:HIPPO-YAP/TAZ signaling has been implicated in supratentorial ependymoma formation from neural progenitor cells (NPC) in the brain, however, the underlying mechanisms to trigger the neural progenitor cell transformation remains elusive. Here, we uncover that patient-derived tumorigenic YAP-fusion proteins (YAP-MAMLD1 and C11ORF95-YAP) promote ependymoma tumorigenesis through forming liquid-liquid phase-separated condensates. Intrinsically disordered regions (IDR) in the fusion proteins promote oligomerization of YAP-transcriptional co-activators and self-assembly of nuclear puncta-like membrane-less organelles. Phase separation of YAP-fusion proteins further facilitates the compartmentalization of transcriptional coactivators, BRD4 and MED1, resulting in pervasive enhancer landscape changes and exclusion of transcriptional repressors such as PRC2 complexes. YAP-fusion proteins-induced nuclear puncta recruit RNA polymerase II to promote transcriptional bursting of multiple oncogenic pathways. Moreover, we show that IDR-mediated phase separation is necessary for YAP-fusion protein-induced tumor formation. Distinct YAP fusion-proteins identified in other human tumors also encompass IDR features. Together, our data suggest that IDR-mediated phase separation is an integral component of YAP-fusion protein-induced tumorigenesis and might serve as a therapeutic target in supratentorial ependymoma.
Project description:HIPPO-YAP/TAZ signaling has been implicated in supratentorial ependymoma formation from neural progenitor cells (NPC) in the brain, however, the underlying mechanisms to trigger the neural progenitor cell transformation remains elusive. Here, we uncover that patient-derived tumorigenic YAP-fusion proteins (YAP-MAMLD1 and C11ORF95-YAP) promote ependymoma tumorigenesis through forming liquid-liquid phase-separated condensates. Intrinsically disordered regions (IDR) in the fusion proteins promote oligomerization of YAP-transcriptional co-activators and self-assembly of nuclear puncta-like membrane-less organelles. Phase separation of YAP-fusion proteins further facilitates the compartmentalization of transcriptional coactivators, BRD4 and MED1, resulting in pervasive enhancer landscape changes and exclusion of transcriptional repressors such as PRC2 complexes. YAP-fusion proteins-induced nuclear puncta recruit RNA polymerase II to promote transcriptional bursting of multiple oncogenic pathways. Moreover, we show that IDR-mediated phase separation is necessary for YAP-fusion protein-induced tumor formation. Distinct YAP fusion-proteins identified in other human tumors also encompass IDR features. Together, our data suggest that IDR-mediated phase separation is an integral component of YAP-fusion protein-induced tumorigenesis and might serve as a therapeutic target in supratentorial ependymoma.
Project description:Ependymoma (EPN) is the third most common central nervous system (CNS) tumor in childhood and, recently, has been classified in nine robust molecular subgroups (Pajtler et al., 2015). However, molecular and clinical features of pediatric EPNs from Brazilian cohorts remain unexplored. Herein, we aimed to analyze the gene expression profile among three different molecular subgroups: ST-EPN-RELA, ST-EPN-YAP1 and PF-EPN-A.
Project description:Proper regulation of nuclear factor κB (NF-κB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-κB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-κB–inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-κB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-κB pathway in B lymphoproliferative disease. This study compares nine t(11;18)-positive MALT lymphomas (8 from the stomach and 1 from lung) and eight translocation negative MALT lymphomas (all from the stomach) using gene set enrichment analysis (GSEA). All cases were subjected to Affymetrix U133A and U133B microarray analysis. The cases used in this study are the same cases used for the study by Hamoudi et al. (2010) entitled "Differential expression of NF-kB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism" with GEO reference number: GSE18736 and PubMed ID: http://www.ncbi.nlm.nih.gov/pubmed/20520640 All cases were subjected to non-specific filtering to eliminate non-variant probes, then the U133A and U133B probes were collapsed and the collapsed set was subjected to GSEA using the NF-kB target gene set as described in Hamoudi et al. (2010) study mentioned above. The 34 samples in this study are identical to the ones done in the previous series except that the gene set enrichment was done on just those 34 samples and not the complete set.
Project description:Constitutive activation of the anti-apoptotic NF-κB signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL) that is characterized by adverse survival. Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-κB pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 mutants in the NF-κB negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of β-Catenin and its destruction complex consisting of APC, AXIN1, CK1α and GSK3β to oncogenic CARMA1. Recruitment of the β-Catenin destruction complex was independent of CARMA1-BCL10-MALT1 (CBM) complex formation or constitutive NF-κB activation and promoted the stabilization of β-Catenin. Elevated β-Catenin expression was detected in cell lines and biopsies from ABC DLBCL that rely on chronic BCR signaling. Increased β-Catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF dependent transcriptional activation in response to WNT signaling. In conjunction with NF-κB, β-Catenin enhanced expression of immune suppressive IL-10 and repressed anti-tumoral CCL3, indicating that β-Catenin may induce a favorable tumor microenvironment. Thus, parallel activation of NF-κB and β-Catenin signaling by gain-of-function mutations in CARMA1 can augment WNT stimulation and is required for maintaining high expression of distinct NF-κB target genes and can thereby trigger cell intrinsic and extrinsic processes that promote DLBCL lymphomagenesis.
Project description:Ependymomas are neuroepithelial tumors of the central nervous system (CNS), presenting in both adults and children but accounting for almost 10% of all pediatric CNS tumors and up to 30% of CNS tumors in children under 3 years (Bouffet et al., 2009; McGuire et al., 2009; Rodriguez et al., 2009). In children, most ependymomas arise in the posterior fossa, while most adult ependymomas present around the lower spinal cord and spinal nerve roots. Ependymomas display a wide range of morphological features, and several variants are listed in the World Health Organization (WHO) classification (Ellison et al., 2016). These variants are assigned to three WHO grades (I-III), but the clinical utility of this classification is acknowledged to be limited (Ellison et al., 2011). An increasing understanding of the genomic landscape of ependymoma and the discovery of distinct molecular groups by DNA methylation or gene expression profiling have begun to refine approaches to disease classification and prognostication, but have yet to be translated into clinical routine (Hoffman et al., 2014; Mack et al., 2014; Pajtler et al., 2017; Pajtler et al., 2015; Parker et al., 2014; Wani et al., 2012; Witt et al., 2011). Our comprehensive study of DNA methylation profiling across the entire disease demonstrated three molecular groups for each major anatomic compartment: supratentorial (ST), posterior fossa (PF), and spinal (SP) (Pajtler et al., 2015). In the ST compartment, two molecular groups (ST-EPN-RELA and ST-EPN-YAP1) align with tumors harboring specific genetic alterations, RELA and YAP1 fusion genes, which were initially discovered in a whole genome sequencing study (Parker et al., 2014). Among PF ependymomas, two of three molecular groups, PFA (PF-EPN-A) and PFB (PF-EPN-B), account for nearly all tumors; PF-SE tumors are rare, generally showing the morphology of a subependymoma (Pajtler et al., 2015). PFA tumors are found mainly in infants and young children (median age ≈ 3yrs) and have a relatively poor outcome, while PFB tumors are generally found in young adults (median age ≈ 30yrs) and are associated with a better prognosis (Pajtler et al., 2015; Witt et al., 2011). PFA tumors show few copy number alterations (CNAs), while PFB tumors harbor multiple CNAs that tend to affect entire chromosomes. While recurrent structural variants (SVs) are found in ST ependymomas, recurrent SVs or other mutations, such as single nucleotide variants (SNVs) and insertions or deletions (indels), have not been identified in PF ependymomas to date (Mack et al., 2014; Parker et al., 2014).
Project description:Proper regulation of nuclear factor κB (NF-κB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-κB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-κB–inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-κB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-κB pathway in B lymphoproliferative disease.
Project description:MTD project_description Inflammation and decreased stem cell function characterize organism aging, yet the relationship between these factors remains incompletely understood. This study shows that aged hematopoietic stem and progenitor cells exhibit increased ground-stage NF-κB activity, which enhances their responsiveness to undergo differentiation and loss of self-renewal in response to inflammation. The study identifies Rad21/cohesin as a critical mediator of NF-κB signals, by increasing chromatin accessibility of inter-/intra-genic and enhancer regions. Rad21/NF-κB are required for normal differentiation, but limit self-renewal of hematopoietic stem cells (HSCs) during aging and inflammation in an NF-κB dependent manner. HSCs from aged mice fail to downregulate Rad21/cohesin and inflammation/differentiation inducing signals in the resolution phase after acute inflammation. and The inhibition of cohesin/NF-κB is sufficient to revert the hypersensitivity of aged HSPCs to inflammation-induced differentiation. During aging, myeloid-biased HSCs with disrupted and naturally occurring reduced expression of Rad21/cohesin are increasingly selected over lymphoid-biased HSCs. Together, Rad21/cohesin mediated NF-κB signaling limits HSPC function during aging and selects for cohesin deficient HSCs with myeloid skewed differentiation.
Project description:Background: A methylation-based classification of ependymoma has recently found broad application. However, the diagnostic advantage and implications for treatment decisions remain unclear. Here, we retrospectively evaluate the impact of surgery and radiotherapy on outcome after molecular reclassification of adult intracranial ependymomas. Methods: Tumors diagnosed as intracranial ependymomas from 170 adult patients collected from eight diagnostic institutions were subjected to DNA methylation profiling. Molecular classes, patient characteristics, and treatment were retrospectively correlated with progression-free survival (PFS). Results: The classifier indicated an ependymal tumor in 73.5%, a different tumor entity in 10.6% and non-classifiable tumors in 15.9% of cases, respectively. The most prevalent molecular classes were posterior fossa ependymoma group B (EPN-PFB, 32.9%), posterior fossa subependymoma (PF-SE, 25.9%), and supratentorial ZFTA fusion-positive ependymoma (EPN-ZFTA, 11.2%). With a median follow-up of 60.0 months, the 5- and 10-year-PFS rates were 64.5% and 41.8% for EPN-PFB, 67.4% and 45.2% for PF-SE and 60.3% and 60.3% for EPN-ZFTA. In EPN-PFB, but not in other molecular classes, gross total resection (p=0.009) and postoperative radiotherapy (p=0.007) were significantly associated with improved PFS in multivariable analysis. Histological tumor grading (WHO 2 vs. 3) was not a predictor of prognosis within molecularly defined ependymoma classes. Conclusions: DNA methylation profiling improves diagnostic accuracy and risk stratification in adult intracranial ependymoma. The molecular class of PF-SE is unexpectedly prevalent among adult tumors with ependymoma histology and relapsed as frequently as EPN-PFB, despite the supposed benign nature. Gross total resection and radiotherapy may represent key factors in determining the outcome of EPN-PFB patients.