Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding
Ontology highlight
ABSTRACT: The yeast Hsp70 chaperone Ssb interacts with ribosomes and nascent chains to co-translationally assist protein folding. Here, we present a proteome-wide analysis of Hsp70 function during translation, based on in vivo selective ribosome profiling, that reveals mechanistic principles coordinating translation with chaperone-assisted protein folding. Ssb binds most cytosolic, nuclear, and mitochondrial proteins and a subset of ER proteins, supporting its general chaperone function. Position-resolved analysis of Ssb engagement reveals compartment- and protein-specific nascent chain binding profiles that are coordinated by emergence of positively charged peptide stretches enriched in aromatic amino acids. Ssbs’ function is temporally coordinated by RAC but independent from NAC. Analysis of ribosome footprint densities along orfs reveals that ribosomes translate faster at times of Ssb binding. This is coordinated by biases in mRNA secondary structure, and codon usage as well as the action of Ssb, suggesting chaperones may allow higher protein synthesis rates by actively coordinating protein synthesis with co-translational folding.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE93830 | GEO | 2017/07/17
SECONDARY ACCESSION(S): PRJNA362545
REPOSITORIES: GEO
ACCESS DATA