Dynamic gene expression response to altered gravity in human T cells (sounding rocket flight)
Ontology highlight
ABSTRACT: We investigated differentially regulated genes in human Jurkat T lymphocytic cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.
Project description:We investigated differentially regulated genes in human Jurkat T lymphocytic cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.
Project description:We investigated differentially regulated and stably expressed genes in human Jurkat T lymphocytic cells in 5min simulated microgravity and hypergravity and compared expression profiles to identify gravity-regulated and unaffected genes as well as adaptation processes.
Project description:We investigated differentially regulated genes in human myelomonocytic U937 cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.
Project description:We investigated differentially regulated genes in human myelomonocytic U937 cells in 20s and 5min microgravity and in hypergravity and compared expression profiles to identify potential gravity-regulated genes and adaptation processes.
Project description:Jurkat T cells have been fixated at different gravity conditions during the 4th Swiss Parabolic Flight Campaign (4SPFC). 1g inflight samples were generated by crosslinking 5 minutes prior to onset of the first parabola. Hypg samples were generated by crosslinking the samples at the end of the first hypergravity 1.8 g phase, 20 seconds after start of the parabola. µg/0g samples were generated by crosslinking the cells 20 seconds after the onset of microgravity during the first parabola. A ground control reference condition was generated by crosslinking cells that were stored inside the flight hardware but were not onboard during the flight.
Project description:Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression. However, simulation experiments on ground, without space constraints, show weaker effects than space environment. A global and integrative analysis using the M-bM-^@M-^\gene expression dynamics inspectorM-bM-^@M-^] (GEDI) self-organizing maps, reveals a subtle response of the transcriptome using different populations and microgravity and hypergravity simulation devices. These results suggest that, in addition to behavioural responses that can be detected also at the gene expression level, the transcriptome is finely tuned to normal gravity. The alteration of this constant parameter on Earth can have effects on gene expression that depends both on the environmental conditions and the ground based facility used to compensate the gravity vector. Alternative and commons effects of mechanical facilities, like the Random Positioning Machine and a centrifuge, and strong magnetic field ones, like a cryogenically cooled superconductive magnet, are discussed. We compare the effects over the gene expression profile of different gender/age Drosophila imagoes in 3-4 days-long experiments under altered gravity conditions into three GBF ("Ground Based Facilities" for micro/hyper- gravity simulation) using whole genome microarray platforms. Descriptions of different GBFs ("treatments"): LDC means "Large Diameter Centrifuge". Samples can be placed under three conditions: inside LDC (at certain g level), at the LDC rotational control and at external 1g control (outside the LDC). RPM means "Random Positioning Machine". Samples can be placed under two conditions: inside RPM (at nearly 0g, Microgravity level) and at external 1g control (outside the RPM). At the magnet, means INSIDE the Magnetic levitator (another GBF). Samples can be placed under four conditions: inside Magnet 0g* (at microgravity with magnetic field), inside Magnet at 1g* (internal control with magnetic field) or inside the magnet 2g* (at hypergravity with magnetic field) and at external 1g control (outside the magnet)
Project description:Euglena gracilis is a unicellular freshwater flagellate, which uses the gravitational vector for orientation in the water column in the dark. This allows the cell to reach areas in the water column for reproduction and growth. How exactly the gravitational vector is perceived, and which intracellular pathways are involved in the signaling is not very well understood so far. In the past, parabolic flight campaigns were used to study the swimming behavior of Euglena gracilis under altered gravitational accelerations. It was shown that cells adapt their swimming direction very fast: in the dark under 1xg cell show negative gravitaxis, i.e. they move upwards in the water column of the experiment hardware and against the gravitational vector. With onset of the first hypergravity period of 1.8xg the precision of upward swimming increases slightly. This first hyper gravity lasts for only 20 seconds and is followed by 22 sec of microgravity. During this period no gravitational vector is perceived by the cells, therefore they lack a cue for orientation and move randomly in all direction. In the subsequent hyper gravity period of 1.8xg, which also lasts for 20 sec, cells direct their movement again and swim upwards. Over different parabolic flight campaigns and other experiments it was shown that this gravitactic behavior is linked to changes in membrane potential, calcium and cAMP concentration. However, due to the lack of genomic and transcriptomic data, it was so far not possible to link the differential movement to the abundance of distinct mRNA transcripts. In contrast, other model organisms, such as Arabidopsis thaliana, have been analyzed by means of gene expression with respect to the effects of altered gravitational accelerations. Also various human cell lines have shown to adapt their gene expression in dependence of the prevailing acceleration. With the recently published Euglena gracilis transcriptome, we now aimed at analyzing effects of altered acceleration on the gene expression in the flagellate. Therefore, Euglena gracilis samples were taken in the course of the 29th DLR parabolic flight campaign during parabola 1 and 31 (time difference of 2 hours and 30 additional parabolas). During both parabolas samples were fixed with TRIzol at 1xg just before onset of the first hyper gravity period, 20 sec into hyper gravity (1.8xg), 20 sec into microgravity (µg) and 20 sec into the last hypergravity period.
Project description:Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression. However, simulation experiments on ground, without space constraints, show weaker effects than space environment. A global and integrative analysis using the “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals a subtle response of the transcriptome using different populations and microgravity and hypergravity simulation devices. These results suggest that, in addition to behavioural responses that can be detected also at the gene expression level, the transcriptome is finely tuned to normal gravity. The alteration of this constant parameter on Earth can have effects on gene expression that depends both on the environmental conditions and the ground based facility used to compensate the gravity vector. Alternative and commons effects of mechanical facilities, like the Random Positioning Machine and a centrifuge, and strong magnetic field ones, like a cryogenically cooled superconductive magnet, are discussed.
Project description:Primary human macrophages in in vitro conditions have been exposed to hypergravity and microgravity during the 28th DLR parabolic flight campaign
Project description:Genome-wide transcriptional profiling showed that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression intimately linked to imposed spaceflight-related environmental constrains during Drosophila metamorphosis. However, simulation experiments on ground testing space-related environmental constraints, show differential responses. Curiously, although particular genes are not common in the different experiments, the same GO groups including a large multigene family related with behavior, stress response and organogenesis are over represented in them. A global and integrative analysis using the gene expression dynamics inspector (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices These results suggest that the transcriptome is finely tuned to normal gravity. In regular environmental conditions the alteration of this constant parameter on Earth can have mild effects on gene expression but when environmental conditions are far from optimal, the gene expression is much more intense and consistent effects.