Cadmium (Cd) induced expression changes in the Arabidopsis thaliana accessions Col-0 and Bur-0
Ontology highlight
ABSTRACT: Metal tolerance is often a result of metal storage or distribution. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, natural variation of metal tolerance in Arabidopsis thaliana was investigated. Substantial variation exists in tolerance of excess copper (Cu), zinc (Zn) and cadmium (Cd). Two accessions, Col-0 and Bur-0, and a recombinant inbred line (RIL) population derived from these parents were chosen for further analysis of Cd and Zn tolerance variation, which is evident at different plant ages in various experimental systems and appears to be genetically linked. Three QTLs, explaining in total nearly 50 % of the variation in Cd tolerance, were mapped. The one obvious candidate gene in the mapped intervals, HMA3, is unlikely to contribute to the variation. In order to identify additional candidate genes the Cd responses of Col-0 and Bur-0 were compared at the transcriptome level. The sustained common Cd response of the two accessions was dominated by processes implicated in plant pathogen defense. Accession-specific differences suggested a more efficient activation of acclimative responses as underlying the higher Cd tolerance of Bur-0. The second hypothesis derived from the physiological characterization of the accessions is a reduced Cd accumulation in Bur-0. The microarray analysis was used to identify candidate genes for Cd-tolerance and -accumulation differences between the accessions Bur-0 and Col-0 as well as to analyse the expressional response of A.thaliana to Cd-stress.
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE94314 | GEO | 2017/07/24
SECONDARY ACCESSION(S): PRJNA369330
REPOSITORIES: GEO
ACCESS DATA