Transcriptomics

Dataset Information

0

Retinal degeneration triggers the activation of YAP/TEAD in reactive Müller cells


ABSTRACT: PURPOSE. During retinal degeneration, Müller glia cells respond to photoreceptor loss by undergoing reactive gliosis, with both detrimental and beneficial effects. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of new therapeutic strategies. The purpose of this work was to identify new factors involved in Müller cell response to photoreceptor cell death. METHODS. Whole transcriptome sequencing was performed from wild-type and degenerating rd10 mouse retinas at P30. The changes in mRNA abundance for several deregulated genes were assessed by RT-qPCR. Protein expression level and retinal cellular localization were determined by western-blot and immunohistochemistry, respectively. RESULTS. Pathway-level analysis from whole transcriptomic data revealed the Hippo/YAP pathway as one of the main signaling pathways altered in response to photoreceptor degeneration in rd10 retinas. We found that downstream effectors of this pathway, YAP and TEAD1, are specifically expressed in Müller cells and that their expression, at both the mRNA and protein levels, is increased in rd10 reactive Müller glia after the onset of photoreceptor degeneration. The expression of Ctgf and Cyr61, two target genes of the transcriptional YAP/TEAD complex, is also upregulated following photoreceptor loss. CONCLUSIONS. This work reveals for the first time that YAP and TEAD1, key downstream effectors of the Hippo pathway, are specifically expressed in Müller cells. We also uncovered a deregulation of the expression and activity of Hippo/YAP pathway components in reactive Müller cells under pathological conditions.

ORGANISM(S): Mus musculus

PROVIDER: GSE94534 | GEO | 2017/05/29

SECONDARY ACCESSION(S): PRJNA371448

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2019-06-01 | GSE121858 | GEO
2015-08-25 | E-GEOD-61852 | biostudies-arrayexpress
2014-10-26 | E-GEOD-56473 | biostudies-arrayexpress
2016-03-21 | PXD002584 | Pride
2019-05-07 | GSE121707 | GEO
| PRJNA371448 | ENA
2008-11-20 | E-GEOD-12498 | biostudies-arrayexpress
2022-04-13 | GSE183206 | GEO
2014-10-31 | GSE35386 | GEO
2022-09-05 | GSE146641 | GEO