Project description:In preeclampsia (PE), cytotrophoblast (CTB) invasion of the uterus and spiral arteries is often shallow. Thus, the placenta's role has been a focus. In this study, we tested the hypothesis that decidual defects are an important determinant of the placental phenotype. We isolated human endometrial stromal cells from nonpregnant donors with a previous pregnancy that was complicated by severe PE (sPE). Compared with control cells, they failed to decidualize in vitro as demonstrated by morphological criteria and the analysis of stage-specific antigens (i.e., IGFBP1, PRL). These results were bolstered by global transcriptional profiling data that showed they were transcriptionally inert. Additionally, we used laser microdissection to isolate the decidua from tissue sections of the maternal-fetal interface in sPE. Global transcriptional profiling revealed defects in gene expression. Also, decidual cells from patients with sPE, which dedifferentiated in vitro, failed to redecidualize in culture. Conditioned medium from these cells failed to support CTB invasion. To mimic aspects of the uterine environment in normal pregnancy, we added PRL and IGFBP1, which enhanced invasion. These data suggested that failed decidualization is an important contributor to down-regulated CTB invasion in sPE. Future studies will be aimed at determining whether this discovery has translational potential with regard to assessing a woman's risk of developing this pregnancy complication.
Project description:In the present study, we aimed to discern the preconception decidual transcriptomic signature associated with in vivo defective decidualization in women who suffered sPE in a previous pregnancy. First, we performed a comparative global transcriptional profiling of endometrium from women who developed sPE in a previous pregnancy and from women who never have had sPE. Then, we selected those genes that were significantly deregulated 1.4-fold higher (FDR<0.05) and have an EntrezID code. As a result, we formulate a transcriptional signature associated with defective decidualization composed by 120 genes.
Project description:Decidualization of the uterine mucosa drives the maternal adaptation to invasion by the placenta. Appropriate depth of placental invasion is needed to support a healthy pregnancy; shallow invasion is associated with the development of severe preeclampsia (sPE). Maternal contribution to sPE through failed decidualization is an important determinant of placental phenotype. However, the molecular mechanism underlying the in vivo defect linking decidualization to sPE is unknown. Global RNA sequencing was applied to obtain the transcriptomic profile of endometrial biopsies collected from nonpregnant women who suffer sPE in a previous pregnancy and women who did not develop this condition. Samples were randomized in two cohorts, the training and the test set, to identify the fingerprinting encoding defective decidualization in sPE and its subsequent validation. Gene Ontology enrichment and an interaction network were performed to deepen in pathways impaired by genetic dysregulation in sPE. Finally, the main modulators of decidualization, estrogen receptor 1 (ESR1) and progesterone receptor B (PGR-B), were assessed at the level of gene expression and protein abundance. Here, we discover the footprint encoding this decidualization defect comprising 120 genes-using global gene expression profiling in decidua from women who developed sPE in a previous pregnancy. This signature allowed us to effectively segregate samples into sPE and control groups. ESR1 and PGR were highly interconnected with the dynamic network of the defective decidualization fingerprint. ESR1 and PGR-B gene expression and protein abundance were remarkably disrupted in sPE. Thus, the transcriptomic signature of impaired decidualization implicates dysregulated hormonal signaling in the decidual endometria in women who developed sPE. These findings reveal a potential footprint that could be leveraged for a preconception or early prenatal screening of sPE risk, thus improving prevention and early treatments. This work has been supported by the grant PI19/01659 (MCIU/AEI/FEDER, UE) from the Spanish Carlos III Institute awarded to TGG. NCM was supported by the PhD program FDGENT/2019/008 from the Spanish Generalitat Valenciana. IMB was supported by the PhD program PRE2019-090770 and funding was provided by the grant RTI2018-094946-B-100 (MCIU/AEI/FEDER, UE) from the Spanish Ministry of Science and Innovation with CS as principal investigator. This research was funded partially by Igenomix S.L.