Project description:This SuperSeries is composed of the following subset Series: GSE9774: Klf2, Klf4, Klf5 and p53 in mouse embryonic stem cells GSE9775: To identify the target genes of Klf2, Klf4 and Klf5 in mouse embryonic stem cells. Keywords: SuperSeries Refer to individual Series
Project description:BackgroundA growing body of evidence has shown that Krüppel-like transcription factors play a crucial role in maintaining embryonic stem cell (ESC) pluripotency and in governing ESC fate decisions. Krüppel-like factor 5 (Klf5) appears to play a critical role in these processes, but detailed knowledge of the molecular mechanisms of this function is still not completely addressed.ResultsBy combining genome-wide chromatin immunoprecipitation and microarray analysis, we have identified 161 putative primary targets of Klf5 in ESCs. We address three main points: (1) the relevance of the pathways governed by Klf5, demonstrating that suppression or constitutive expression of single Klf5 targets robustly affect the ESC undifferentiated phenotype; (2) the specificity of Klf5 compared to factors belonging to the same family, demonstrating that many Klf5 targets are not regulated by Klf2 and Klf4; and (3) the specificity of Klf5 function in ESCs, demonstrated by the significant differences between Klf5 targets in ESCs compared to adult cells, such as keratinocytes.ConclusionsTaken together, these results, through the definition of a detailed list of Klf5 transcriptional targets in mouse ESCs, support the important and specific functional role of Klf5 in the maintenance of the undifferentiated ESC phenotype. See: http://www.biomedcental.com/1741-7007/8/125.
Project description:We identified the binding profile of Klf4 and Klf5, which are both transcription facyors involved in the maintenance of pluripotency of ESCs by inhibiting their differentiation either into endoderm or mesoderm respectively.
Project description:We identified the binding profile of Klf4 and Klf5, which are both transcription facyors involved in the maintenance of pluripotency of ESCs by inhibiting their differentiation either into endoderm or mesoderm respectively. Undifferentiated mouse ESCs were used to identify Klf4 and Klf5 bidning sites
Project description:Transcription factor Krüppel-like factor 5 (Klf5) plays important roles in the formation of the inner cell mass (ICM) and the trophectoderm during embryogenesis, as well as the self-renewal and the differentiation of mouse embryonic stem cells (ESCs). Acetylation of KLF5 has been shown to reverse the transcriptional activity of KLF5 in human epidermal cells and prostate cancer cells. Whether Klf5 acetylation contributes to the lineage specification in the blastocyst and pluripotency maintenance in ESCs remains unexplored. Here, we showed the ubiquitous expression of acetylated Klf5 in the ICM and the trophectoderm, ruling out the possibility that differential acetylation status of Klf5 leads to the lineage specification in the blastocyst. We found that K358Q mutation, mimicking acetylation, enhances the transcriptional activity of Klf5 for pluripotency genes in ESCs, and that K358Q Klf5 is more potent in pluripotency maintenance and in somatic cell reprogramming, compared to K358R Klf5. In ESCs, Klf5 acetylation, stimulated by TGF-β signaling, is involved in enhancing Sox2 expression. Moreover, upon ESC differentiation, acetylation of Klf5 facilitates the suppression of many differentiation genes, except for that K358Q Klf5 activates Cdx2, promoting trophectodermal differentiation. In summary, our results revealed the regulatory functions of Klf5 acetylation in ESC self-renewal and differentiation.
Project description:The Argonaute proteins (AGOs) are well known for their role in post-transcriptional gene silencing in the microRNA (miRNA) pathway. Here we show that in mouse embryonic stem cells, AGO1&2 serve additional functions that go beyond the miRNA pathway. Through the combined deletion of both Agos, we identified a specific set of genes that are uniquely regulated by AGOs but not by the other miRNA biogenesis factors. Deletion of Ago2&1 caused a global reduction of the repressive histone mark H3K27me3 due to downregulation at protein levels of Polycomb repressive complex 2 components. By integrating chromatin accessibility, prediction of transcription factor binding sites, and chromatin immunoprecipitation sequencing data, we identified the pluripotency factor KLF4 as a key modulator of AGO1&2-regulated genes. Our findings revealed a novel axis of gene regulation that is mediated by noncanonical functions of AGO proteins that affect chromatin states and gene expression using mechanisms outside the miRNA pathway.
Project description:Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal.
Project description:BACKGROUND:The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse. METHODOLOGY/PRINCIPAL FINDINGS:Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)(n) repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents. CONCLUSIONS/SIGNIFICANCE:Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species.
Project description:Mouse embryonic stem cells (ESCs) are pluripotent stem cells, which have the ability to differentiate into all three germ layers: mesoderm, endoderm, and ectoderm. Proper levels of phosphorylated extracellular signal-regulated kinase (pERK) are critical for maintaining pluripotency, as elevated pERK evoked by fibroblast growth factor (FGF) receptor activation results in differentiation of ESCs, while, conversely, reduction of pERK by a MEK inhibitor maintains a pluripotent ground state. However, mechanisms underlying proper control of pERK levels in mouse ESCs are not fully understood. Here, we find that Klf5, a Krüppel-like transcription factor family member, is a component of pERK regulation in mouse ESCs. We show that ERK signaling is overactivated in Klf5-KO ESCs and the overactivated ERK in Klf5-KO ESCs is suppressed by the introduction of Klf5, but not Klf2 or Klf4, indicating a unique role for Klf5 in ERK suppression. Moreover, Klf5 regulates Spred1, a negative regulator of the FGF-ERK pathway. Klf5 also facilitates reprogramming of EpiSCs into a naïve state in combination with a glycogen synthase kinase 3 inhibitor and LIF, and in place of a MEK inhibitor. Taken together, these results show for the first time that Klf5 has a unique role suppressing ERK activity in mouse ESCs.
Project description:Understanding the mechanisms that regulate pluripotency of embryonic stem cells (ESCs) is important to ensure their safe clinical use. CHIR99021 (CHIR)-induced activation of Wnt/β-catenin signaling promotes self-renewal in mouse ESCs (mESCs). β-catenin functions individually or cooperates with transcription factors to activate stemness factors such as c-Myc, Esrrb, Pou5f1, and Nanog. However the relationship between the core pluripotent factor, Kruppel-like factor 4 (also known as GKLF or EZF) and Wnt/β-catenin signaling, remains ambiguous in J1 mESCs. DNA microarray analysis revealed that CHIR-treatment promoted pluripotency-maintaining transcription factors and repressed germ layer specification markers. CHIR also promoted genes related to the development of extracellular regions and the plasma membrane to maintain pluripotency of J1 mESCs. Among the CHIR-regulated genes, Klf4 has not been reported previously. We identified a novel cis element in the Klf4 gene that was activated by β-catenin in J1 mESCs. We determined that β-catenin interacted with this cis element, identifying Klf4 as a β-catenin target gene in this context. Moreover, several microRNAs that targeted the 3'-UTR of Klf4 mRNA were identified, with miR-7a being down-regulated by CHIR in a β-catenin-independent manner in J1 mESCs. These data collectively suggest that CHIR enhances Klf4 expression by repressing miR-7a expression or canonical Wnt pathway activation.