Cell-type specific gene programs of the normal human nephron define kidney cancer subtypes
Ontology highlight
ABSTRACT: Comprehensive transcriptome studies of cancers often rely on corresponding normal tissue samples to serve as a transcriptional reference. In this study we performed in-depth analyses of normal kidney tissue transcriptomes from TCGA and demonstrate that the histological variability in cellularity, inherent in the kidney architecture, lead to considerable transcriptional differences between samples. This should be considered when comparing expression profiles of normal and cancerous kidney tissues. We exploited these differences to define renal cell-specific gene signatures and used these as framework to analyze renal cell carcinoma (RCC) ontogeny. Chromophobe RCCs express FOXI1-driven genes that define collecting duct intercalated cells whereas HNF-regulated genes, specific for proximal tubule cells, are an integral part of clear cell and papillary RCC transcriptomes. These networks may be used as framework for understanding the interplay between genomic changes in RCC subtypes and the lineage-defining regulatory machinery of their non-neoplastic counterparts.
Project description:Profiling of adult and pediatric renal tumors reveals that genome wide miRNA expression patterns are unique to each tumor subtypes. Keywords: Disease state analysis Samples from Clear Cell RCC, Papillary RCC, Chromophobe RCC, Oncocytoma, and Wilms Tumor compared to pooled normal kidney samples from these same patients. No technical replicates.
Project description:Renal cell carcinoma is the most common neoplasm of the adult kidney. A few subtypes of RCC include papillary RCC (pRCC), chromophobe RCC (chRCC) and the benign oncocytoma tumor. In some cases, distinguishing between the RCC subyptes is difficult. We performed a mircroRNA (miRNA) microarray to determine differential miRNA expression between pRCC, chRCC, and oncocytoma. We performed a miRNA microarray on 10 tumor samples of each papillary renal cell carcinoma (pRCC), chromophobe renal cell carcinoma (chRCC), and oncocytoma.
Project description:Vinylidene Chloride has been widely used in the production of plastics and flame retardants. Exposure of B6C3F1 to VDC in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increase in renal cell hyperplasias, adenomas, and carcinomas (RCCs). Global gene expression analysis showed overrepresentation of pathways associated with chronic xenobiotic and oxidative stress in RCCs from VDC-exposed B6C3F1 mice, as well as cMyc overexpression and dysregulation of Tp53 cell cycle checkpoint and DNA damage repair pathways. Trend analysis comparing RCC, VDC-exposed kidney, and vehicle control kidney showed a conservation of pathway dysregulation in terms of overrepresentation of xenobiotic and oxidative stress, and DNA damage and cell cycle checkpoint pathways in both VDC-exposed kidney and RCC, suggesting that these mechanisms play a role in the development of RCC in VDC-exposed mice. Compare mouse renal cell carcinoma versus treated kidney and vehicle control normal kidney, 6 replicates each group.
Project description:Renal cell carcinoma is the most common neoplasm of the adult kidney. A few subtypes of RCC include papillary RCC (pRCC), chromophobe RCC (chRCC) and the benign oncocytoma tumor. In some cases, distinguishing between the RCC subyptes is difficult. We performed a mircroRNA (miRNA) microarray to determine differential miRNA expression between pRCC, chRCC, and oncocytoma.
Project description:Vinylidene Chloride has been widely used in the production of plastics and flame retardants. Exposure of B6C3F1 to VDC in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increase in renal cell hyperplasias, adenomas, and carcinomas (RCCs). Global gene expression analysis showed overrepresentation of pathways associated with chronic xenobiotic and oxidative stress in RCCs from VDC-exposed B6C3F1 mice, as well as cMyc overexpression and dysregulation of Tp53 cell cycle checkpoint and DNA damage repair pathways. Trend analysis comparing RCC, VDC-exposed kidney, and vehicle control kidney showed a conservation of pathway dysregulation in terms of overrepresentation of xenobiotic and oxidative stress, and DNA damage and cell cycle checkpoint pathways in both VDC-exposed kidney and RCC, suggesting that these mechanisms play a role in the development of RCC in VDC-exposed mice.
Project description:PBRM1 was found to be mutated in a high percentage of clear cell RCCs. We performed knockdown of PBRM1 via siRNA and compared with scrambled control in three different RCC cell lines. PBRM1 siRNA and mock treated cell lines were normalized together with 'hypoxic' clear cell renal tumors and normal renal tissue samples from GSE17818.
Project description:In order to address the progression, metastasis, and clinical heterogeneity of renal cell cancer (RCC), transcriptional profiling with oligonucleotide microarrays (22,283 genes) was done on 49 RCC tumors, 20 non-RCC renal tumors, and 23 normal kidney samples. Samples were clustered based on gene expression profiles and specific gene sets for each renal tumor type were identified. Gene expression was correlated to disease progression and a metastasis gene signature was derived. Gene signatures were identified for each tumor type with 100% accuracy. Differentially expressed genes during early tumor formation and tumor progression to metastatic RCC were found. Subsets of these genes code for secreted proteins and membrane receptors and are both potential therapeutic or diagnostic targets. A gene pattern ("metastatic signature") derived from primary tumors was very accurate in classifying tumors with and without metastases at the time of surgery. A previously described "global" metastatic signature derived by another group from various non-RCC tumors was validated in RCC. Unlike previous studies, we describe highly accurate and externally validated gene signatures for RCC subtypes and other renal tumors. Interestingly, the gene expression of primary tumors provides us information about the metastatic status in the respective patients and has the potential, if prospectively validated, to enrich the armamentarium of diagnostic tests in RCC. We validated in RCC, for the first time, a previously described metastatic signature and further showed the feasibility of applying a gene signature across different microarray platforms. Transcriptional profiling allows a better appreciation of the molecular and clinical heterogeneity in RCC. We used the following tissue samples to obtain transcriptional profiling of kidney tumors using Affymetrix HGU-133A chips: 23 Normal, 32 clear cell RCC (cRCC), 11 papillary RCC (pRCC), 6 chromophobe RCC (chrRCC), 12 Oncocytoma (OC), and 8 transitional cell carcinoma (TCC). The supplementary file 'GSE15641_mas5_data.txt' contains MAS5 signal values for the Samples included in Series GSE15641. This dataset is part of the TransQST collection.
Project description:This study aims to compare gene expression profiles of chromophobe renal cell carcinoma (RCC) and benign oncocytoma, aiming at identifying differentially expressed genes.
Project description:Hepatocyte nuclear factor-1β (HNF-1β) is a tissue-specific transcription factor that is essential for the development of the kidney. Mutations of HNF-1β produce autosomal dominant tubulointerstitial kidney disease (ADTKD) characterized by tubular cysts, renal fibrosis, and progressive decline in kidney function. To understand the functions of HNF-1β, we generated HNF-1β-deficient mIMCD3 renal epithelial cells. Gene editing with CRISPR/Cas9 was used to delete exon 1 of HNF-1β by non-homologous end joining (NHEJ). We performed RNA-seq on three independent HNF-1β-deficient mIMCD3 cell lines and three paired control cell lines. Our RNA-seq of HNF-1β-deficient cells showed upregulation of 1,135 genes and repression of 759 genes compared to control cells. Pathway analysis revealed that fibrosis and epithelial-mesenchymal transition (EMT) pathways were highly activated in HNF-1β-deficient cells. We conclude that loss of HNF-1β in renal epithelial cells leads to the activation of a transcriptional network that induces EMT and aberrant TGFβ signaling. Targeting this network may inhibit fibrosis in ADTKD and other chronic kidney diseases.
Project description:Renal tumors with complex morphology require extensive workup for accurate classification. Chromosomal aberrations that define subtypes of renal epithelial neoplasms have been reported. We explored if whole-genome chromosome copy number and loss-of-heterozygosity analysis with single nucleotide polymorphism (SNP) arrays can be used to identify these aberrations. Experiment Overall Design: We analyzed 20 paraffin-embedded tissues representing conventional renal cell carcinoma (RCC), papillary RCC, chromophobe RCC, and oncocytoma with Affymetrix GeneChip 10K 2.0 Mapping arrays.