Regulation of Liver Regeneration and Hepatocarcinogenesis by Suppressor of Cytokine Signaling 3
Ontology highlight
ABSTRACT: Suppressor of cytokine signaling 3 (SOCS3) down-regulates several signaling pathways in multiple cell types, and previous data suggest that SOCS3 may shut off cytokine activation at the early stages of liver regeneration. We developed hepatocyte-specific Socs3 knockout (Socs3 h-KO) mice to directly study the role of SOCS3 during liver regeneration after 2/3 partial hepatectomy (PH). Socs3 h-KO mice demonstrate marked enhancement of DNA replication and liver weight restoration after 2/3 PH in comparison with littermate controls. Without SOCS3, signal transducer and activator of transcription 3 (STAT3) phosphorylation is prolonged, and activation of the mitogenic kinases extracellular signal-regulated kinase 1/2 (ERK1/2) is enhanced after PH. In vitro, we show that SOCS3 deficiency enhances hepatocyte proliferation in association with enhanced STAT3 and ERK activation after epidermal growth factor (EGF) or interleukin 6 (IL-6) stimulation. Microarray analyses show that SOCS3 modulates a distinct set of genes after PH, which fall into diverse physiologic categories. Using a model of chemical-induced carcinogenesis, we found that Socs3 h-KO mice develop hepatocellular carcinoma (HCC) at an accelerated rate. By acting on cytokines and multiple proliferative pathways, SOCS3 modulates both physiologic and neoplastic proliferative processes in the liver, and may act as a tumor suppressor. Keywords: SOCS3, liver regeneration
ORGANISM(S): Mus musculus
PROVIDER: GSE9549 | GEO | 2007/12/12
SECONDARY ACCESSION(S): PRJNA103365
REPOSITORIES: GEO
ACCESS DATA