Probing Plasmodium falciparum sexual differentiation at the single cell level
Ontology highlight
ABSTRACT: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel events that initiate sexual development in preparation for transmission of the parasite from human to mosquito. This proof-of-concept study provides a template to capture transcriptional diversity in heterogeneous parasite populations, with major implications for our understanding of parasite biology and the ongoing malaria elimination campaign.
Project description:The malaria parasite has a complex lifecycle, including several events of differentiation and stage progression, while actively evading immunity in both its mosquito and human hosts. Important parasite gene expression and regulation during these events remain hidden in rare populations of cells. Here, we combine a capillary-based platform for cell isolation with single-cell RNA-sequencing to transcriptionally profile 165 single infected red blood cells (sc.iRBCs) during the intra- erythrocyte developmental cycle (IDC). Unbiased analyses of single-cell data grouped the cells into eight transcriptional states during IDC. Interestingly, we uncovered a gene signature from the single iRBC analyses that can successfully discriminate between developing asexual and sexual stage parasites at cellular resolution, and we verify five, previously undefined, gametocyte stage specific genes. Moreover, we show the capacity of detecting expressed genes from the variable gene families in single parasites, despite the sparse nature of data. In total, the single parasite transcriptomics holds promise for molecular dissection of rare parasite phenotypes throughout the malaria lifecycle.
Project description:Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 hours post blood feeding, including the zygote and ookinete stages. This study revealed the temporal gene expression of the ApiAP2 family of transcription factors, and of parasite stress genes in response to the harsh environment of the mosquito midgut. Further, employing structural protein prediction analyses we found several upregulated genes predicted to encode intrinsically disordered proteins (IDPs), a category of proteins known for their importance in regulation of transcription, translation and protein-protein interactions. IDPs are known for their antigenic properties and may serve as suitable targets for antibody or peptide-based transmission suppression strategies. In total, this study uncovers the P. falciparum transcriptome from early-to-late parasite development in the mosquito midgut, inside its natural vector, which provides an important resource for future malaria transmission-blocking initiatives. Single-cell data can be visualized interactively via https://mubasher-mohammed.shinyapps.io/shinyapp/ In-house bash, R code scripts and data that were implemented in this study are available on GitHub https://github.com/ANKARKLEVLAB/Single-cell-P.falciparum-midgut .
Project description:Background: The mosquito Anopheles gambiae is a major vector of human malaria. Increasing evidence indicates that blood cells (hemocytes) comprise an essential arm of the mosquito innate immune response against both bacteria and malaria parasites. To further characterize the role of hemocytes in mosquito immunity, we undertook the first genome-wide transcriptomic analyses of adult female An. gambiae hemocytes following infection by two species of bacteria and a malaria parasite. Results: We identified 4047 genes expressed in hemocytes, using An. gambiae genome-wide microarrays. While 279 transcripts were significantly enriched in hemocytes relative to whole adult female mosquitoes, 959 transcripts exhibited immune challenge-related regulation. The global transcriptomic responses of hemocytes to challenge with different species of bacteria and/or different stages of malaria parasite infection revealed discrete, minimally overlapping, pathogen-specific signatures of infection-responsive gene expression; 105 of these represented putative immunity-related genes including anti-Plasmodium factors. Of particular interest was the specific co-regulation of various members of the Imd and JNK immune signaling pathways during malaria parasite invasion of the mosquito midgut epithelium. Conclusion: Our genome-wide transcriptomic analysis of adult mosquito hemocytes reveals pathogen-specific signatures of gene regulation and identifies several novel candidate genes for future functional studies.
Project description:Background: Infection by the human malaria parasite leads to important changes in mosquito phenotypic traits related to vector competence. However, we still lack a clear understanding of the underlying mechanisms and, in particular, of the epigenetic basis for these changes. We have examined genome-wide distribution maps of H3K27ac, H3K9ac, H3K9me3 and H3K4me3 by ChIP-seq and the transcriptome by RNA-seq, of midguts from Anopheles gambiae mosquitoes blood-fed uninfected and infected with natural isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. Results: We report 15,916 regions containing differential histone modification enrichment between infected and uninfected, of which 8339 locate at promoters and/or intersect with genes. The functional annotation of these regions allowed us to identify infection-responsive genes showing differential enrichment in various histone modifications, such as CLIP proteases, antimicrobial peptides-encoding genes, and genes related to melanization responses and the complement system. Further, the motif analysis of regions differentially enriched in various histone modifications predicts binding sites that might be involved in the cis-regulation of these regions, such as Deaf1, Pangolin and Dorsal transcription factors (TFs). Some of these TFs are known to regulate immunity gene expression in Drosophila and are involved in the Notch and JAK/STAT signaling pathways. Conclusions: The analysis of malaria infection-induced chromatin changes in mosquitoes is important not only to identify regulatory elements and genes underlying mosquito responses to P. falciparum infection, but also for possible applications to the genetic manipulation of mosquitoes and to other mosquito-borne systems.
Project description:Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during parasite human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA).
Project description:P. falciparum undergoes antigenic variation during its life cycle in the human host. To accomplish this, the malaria parasite has developed mechanisms that ensure the expression of a single member of the var gene family to produce one of the PfEMP1 variant proteins. Here we carry out RNA-seq and ChIP-seq analyses of histone modifications to explore transcriptional and epigenomic changes taking place between the transmissible stages of the parasite i.e. gametocytes present in human blood and sporozoites present in the mosquito salivary glands. We find that most var genes are expressed at low levels in gametocytes but a single var gene is selected during the oocyst stage in the mosquito. Clonal expression of a specific var gene is accompanied by the establishment of specific histone modification patterns in the active and inactive genes. These modifications are epigenetically transmitted from the oocyst to the infective sporozoite stage, where expression of the active var gene is amplified by the transcription of an antisense lncRNA. The findings suggest a critical role for the mosquito immune system in determining the choice of var gene activation prior to transmission to the human host.
Project description:The Apicomplexa constitute a large phylum of parasitic protozoans with complex life cycles that typically include meiotic sex. The life cycle of the malaria parasite, Plasmodium falciparum, includes obligate transition and stage development between a human and mosquito host. Asexual parasite replication in the human erythrocytes is followed by differentiation which leads to the formation of a precursor gamete stage, referred to as gametocytes. The gametocyte stage is solely responsible for malaria transmission into the mosquito vector where gamete fusion followed by meiosis occurs. How the parasite differentiates into male and female gametocytes in the absence of sex chromosomes largely remains an open question. Here, we combine FACS-based cell enrichment of a gametocyte reporter line followed by single-cell RNA-seq, to enable targeted characterization of the entire gametocyte developmental stage. Our data defines differential transcription programs during male and female gametocyte development and highlights a bifurcation point for sexual cell fate. We perform prediction analyses of novel candidate driver genes underlying P. falciparum sexual cell fate. Additionally, we delineate the timing of expression of members of the ApiAP2 family of transcription factors and predict their specificity in male or female P. falciparum gametocyte development.
Project description:The sexual stages are vital phases in malaria parasite transmission and are the targets of various interventions such as transmission blocking vaccines. The molecular mechanisms underlying sexual development, however, remain poorly understood. We report mappping of a determinant previously linked to a male gametocyte development defect in the P. falciparum Dd2 parasite to an 82 kb region on chromosome 12. In order to find a critical gene in this region, we compared gene expression pattern in sexual stage of the parasite between Dd2 and its normal gametocyte-producing ancestor W2 clones. The region contains a sexual stage specific gene (pfmdv 1) that is expressed substantially at a lower level in the Dd2 than in W2 parasite. Disruption of pfmdv 1 results in a dramatic reduction in mature gametocytes, especially male gametocytes, with the majority of sexually committed parasites arrested at stage-I. The pfmdv-1 knockout parasites show an enlarged nucleus, often with separation of the inner and outer nuclear membranes and presence of multi-membrane vesicles in red blood cell cytoplasm. Mosquito infectivity of the knockout parasites is also greatly reduced, but not completely lost, suggesting presence of compensatory mechanisms in the sexual development pathways. Data include Day 8 gametocytes of male defective Dd2 and parental W2 clones of Plasmodium falciparum. The series includes three biological repeats. Keywords: repeat sample
Project description:The sexual stages are vital phases in malaria parasite transmission and are the targets of various interventions such as transmission blocking vaccines. The molecular mechanisms underlying sexual development, however, remain poorly understood. We report mappping of a determinant previously linked to a male gametocyte development defect in the P. falciparum Dd2 parasite to an 82 kb region on chromosome 12. In order to find a critical gene in this region, we compared gene expression pattern in sexual stage of the parasite between Dd2 and its normal gametocyte-producing ancestor W2 clones. The region contains a sexual stage specific gene (pfmdv 1) that is expressed substantially at a lower level in the Dd2 than in W2 parasite. Disruption of pfmdv 1 results in a dramatic reduction in mature gametocytes, especially male gametocytes, with the majority of sexually committed parasites arrested at stage-I. The pfmdv-1 knockout parasites show an enlarged nucleus, often with separation of the inner and outer nuclear membranes and presence of multi-membrane vesicles in red blood cell cytoplasm. Mosquito infectivity of the knockout parasites is also greatly reduced, but not completely lost, suggesting presence of compensatory mechanisms in the sexual development pathways. Data include Day 8 gametocytes of male defective Dd2 and parental W2 clones of Plasmodium falciparum. The series includes three biological repeats. Keywords: repeat sample