ABSTRACT: X chromosome inactivation (XCI) is a dosage compensation mechanism in female cells to regulate X-linked gene expression. We report here that subcultures from established lines of female hESCs displayed variations (0-100%) in the expression of XCI markers such as XIST RNA coating and enrichment of histone H3 lysine 27 trimethylation (H3K27me3) on inactive X chromosome. Surprisingly, regardless of the presence or absence of XCI markers in different cultures, all female hESCs we examined (H7, H9, and HSF6 cells) exhibit a mono-allelic expression pattern for a majority of X-linked genes. Our results suggest that these established female hESCs have completed XCI during the process of derivation and/or propagation, and the XCI pattern of lines we investigated is already non-random. However, XIST gene expression in subsets of female hESCs is unstable and subject to epigenetic silencing through DNA methylation. Concomitant with the loss of XCI markers including XIST expression and H3K27me3, approximately 12% of X-linked CpG islands become hypomethylated and a subset of previously silenced X-linked alleles are reactivated, resulting a significant elevation of gene expression dosage. Because changes in dosage compensation of X-linked genes could impair somatic cell function, we propose that XCI status should be routinely checked in subcultures of female hESCs, with cultures displaying XCI markers better suited for use in regenerative medicine. Keywords: Genotyping, gene expression and DNA methylation
Project description:X chromosome inactivation (XCI) is a dosage compensation mechanism in female cells to regulate X-linked gene expression. We report here that subcultures from established lines of female hESCs displayed variations (0-100%) in the expression of XCI markers such as XIST RNA coating and enrichment of histone H3 lysine 27 trimethylation (H3K27me3) on inactive X chromosome. Surprisingly, regardless of the presence or absence of XCI markers in different cultures, all female hESCs we examined (H7, H9, and HSF6 cells) exhibit a mono-allelic expression pattern for a majority of X-linked genes. Our results suggest that these established female hESCs have completed XCI during the process of derivation and/or propagation, and the XCI pattern of lines we investigated is already non-random. However, XIST gene expression in subsets of female hESCs is unstable and subject to epigenetic silencing through DNA methylation. Concomitant with the loss of XCI markers including XIST expression and H3K27me3, approximately 12% of X-linked CpG islands become hypomethylated and a subset of previously silenced X-linked alleles are reactivated, resulting a significant elevation of gene expression dosage. Because changes in dosage compensation of X-linked genes could impair somatic cell function, we propose that XCI status should be routinely checked in subcultures of female hESCs, with cultures displaying XCI markers better suited for use in regenerative medicine. Keywords: Genotyping, gene expression and DNA methylation We used Affymetrix Genotyping array for looking for X-linked SNPs with HSF6, H7 and H9 genomic DNA, Agilent Gene expression array for comparing gene expression patten changes between HSF6 hESCs with X-inactiation and HSF6 hESCs without X-inactivation (3 repeats). Finally, mDIP-Chip method was used to detect X-linked CpG island methylation changes differences between hESCs with X-inactivation and hESCs without X-inactivation using Agilent CpG island array (3 repeats, and one of them has dye swap)
Project description:X chromosome inactivation (XCI) compensates for differences in X-chromosome number between male and female mammals. XCI is orchestrated by Xist RNA, whose expression in early development leads to transcriptional silencing of one X-chromosome in the female. Knockout studies have established a requirement for Xist, with inviability of female embryos that inherit an Xist deletion from the father. Here, we report that female mice lacking Xist RNA can, surprisingly, develop and survive to term. Xist-null females are born at lower frequency and are smaller at birth, but organogenesis is mostly normal. Transcriptomic analysis indicates significant overexpression of hundreds of X-linked genes across multiple tissues. Therefore, Xist-null mice can develop to term in spite of a deficiency of dosage compensation. However, the degree of X-autosomal dosage imbalance was less than anticipated (1.14- to 1.36-fold). Thus, partial dosage compensation can be achieved without Xist, supporting the idea of inherent genome balance. Nevertheless, to date, none of the mutant mice has survived beyond weaning stage. Sudden death is associated with failure of postnatal organ maturation. Our data suggest Xist-independent mechanisms of dosage compensation and demonstrate that small deviations from X-autosomal balance can have profound effects on overall fitness. RNA-sequencing of tail-tip fibroblasts (TTFs), spleen, liver and heart tissue from Xist-null and control female mice. Sequencing performed with 50nt read length on Illumina HiSeq2000 or 2500. Data consists of 3 biological replicates for TTFs (6 datasets) and 2 biological replicates for tissues (12 datasets).
Project description:X chromosome inactivation (XCI) compensates for differences in X-chromosome number between male and female mammals. XCI is orchestrated by Xist RNA, whose expression in early development leads to transcriptional silencing of one X-chromosome in the female. Knockout studies have established a requirement for Xist, with inviability of female embryos that inherit an Xist deletion from the father. Here, we report that female mice lacking Xist RNA can, surprisingly, develop and survive to term. Xist-null females are born at lower frequency and are smaller at birth, but organogenesis is mostly normal. Transcriptomic analysis indicates significant overexpression of hundreds of X-linked genes across multiple tissues. Therefore, Xist-null mice can develop to term in spite of a deficiency of dosage compensation. However, the degree of X-autosomal dosage imbalance was less than anticipated (1.14- to 1.36-fold). Thus, partial dosage compensation can be achieved without Xist, supporting the idea of inherent genome balance. Nevertheless, to date, none of the mutant mice has survived beyond weaning stage. Sudden death is associated with failure of postnatal organ maturation. Our data suggest Xist-independent mechanisms of dosage compensation and demonstrate that small deviations from X-autosomal balance can have profound effects on overall fitness.
Project description:X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally deleted Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HPSCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy, and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis.
Project description:X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally deleted Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HPSCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy, and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis.
Project description:X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally deleted Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HPSCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy, and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis.
Project description:X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally deleted Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HPSCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy, and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis.
Project description:X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally deleted Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HPSCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy, and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis.
Project description:Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome (XCI) in all female somatic cells. Up-regulation of Xist transcription on the future inactive X chromosome (Xi) acts against Tsix antisense transcription, and spreading of Xist RNA in cis triggers epigenetic changes leading to XCI. Previously, we have shown that the X-encoded E3 ubiquitin ligase RNF12 is up-regulated in differentiating mouse embryonic stem cells (ESCs) and activates Xist transcription and XCI. Here, we have identified the pluripotency factor REX1 as a key target of RNF12 in the XCI mechanism. RNF12 causes ubiquitination and proteasomal degradation of REX1, and Rnf12 knockout mouse ESCs show an increased level of REX1. Using ChIP-seq, REX1 binding sites were detected in Xist and Tsix regulatory regions. Over-expression of REX1 in female ESCs was found to inhibit Xist transcription and XCI, whereas male Rex1+/- ESCs showed ectopic XCI. From this, we propose that RNF12 causes REX1 breakdown through dose-dependent catalysis, thereby representing an important pathway to initiate XCI. Rex1 and Xist are present only in placental mammals, which points to co-evolution of these two genes and XCI. 2 (one control one pulldown) samples
Project description:X-chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X-chromosome in cis to mediate chromosome-wide gene silencing. In female naïve human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration and XCI does not occur, raising questions about XIST’s function. We found that XIST spreads across the X-chromosome and induces dampening of X-linked gene expression in naïve hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences on autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X-chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences on autosomes. Dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our results identify XIST as the regulator of X-chromosome dampening, uncover an evolutionarily conserved trans-acting role of XIST/Xist, and reveal a correlation between XIST/Xist dispersal and autosomal targeting.