DDM1/Lsh remodelers allow methylation of DNA wrapped in nucleosomes
Ontology highlight
ABSTRACT: Eukaryotic DNA is wrapped around histone octamers to form nucleosomes, which are separated by linker DNA bound by histone H1. In many species, the DNA exhibits methylation of CG dinucleotides, which is epigenetically inherited via a semiconservative mechanism. How methyltransferases access DNA within nucleosomes remains mysterious. Here we show that methylation of nucleosomes requires DDM1/Lsh nucleosome remodelers in Arabidopsis thaliana and mouse. We also show that removal of histone H1, which partially restores methylation in ddm1 mutants, does so primarily in the linker DNA between nucleosomes. In h1ddm1 compound mutants, substantial portions of the genome exhibit dramatically periodic methylation that approaches wild-type levels in linker DNA but is virtually absent in nucleosomes. We also present evidence that de novo methylation supplements semiconservative maintenance of CG methylation across generations. Overall, our results demonstrate that nucleosomes and H1 are barriers to DNA methylation, which are overcome by DDM1/Lsh nucleosome remodelers.
Project description:Eukaryotic DNA methylation is found in silent transposable elements and active genes. Nucleosome remodelers of the DDM1/Lsh family are thought to be specifically required to maintain transposon methylation, but the reason for this is unknown. Here, we find that a chromatin gradient that extends from the most heterochromatic transposons to euchromatic genes determines the requirement of DDM1 for methylation maintenance in all sequence contexts. We also show that small RNA-directed DNA methylation (RdDM) is inhibited by heterochromatin and absolutely requires the nucleosome remodeler DRD1. DDM1 and RdDM independently mediate nearly all transposon methylation, which is catalyzed by the methyltransferases MET1 (CG), CMT3 (CHG), DRM2 (CHH) and CMT2 (CHH), and collaborate to repress transposition and regulate the methylation and expression of genes. Our results indicate that the Arabidopsis genome is defined by a heterochromatic continuum that governs the access of DNA methyltransferases and potentially all DNA binding proteins. Examination of DNA methylation, transcription and nucleosomes in Arabidopsis wild-type and/or ddm1, RdDM and DNA methylase mutants.
Project description:Eukaryotic DNA methylation is found in silent transposable elements and active genes. Nucleosome remodelers of the DDM1/Lsh family are thought to be specifically required to maintain transposon methylation, but the reason for this is unknown. Here, we find that a chromatin gradient that extends from the most heterochromatic transposons to euchromatic genes determines the requirement of DDM1 for methylation maintenance in all sequence contexts. We also show that small RNA-directed DNA methylation (RdDM) is inhibited by heterochromatin and absolutely requires the nucleosome remodeler DRD1. DDM1 and RdDM independently mediate nearly all transposon methylation, which is catalyzed by the methyltransferases MET1 (CG), CMT3 (CHG), DRM2 (CHH) and CMT2 (CHH), and collaborate to repress transposition and regulate the methylation and expression of genes. Our results indicate that the Arabidopsis genome is defined by a heterochromatic continuum that governs the access of DNA methyltransferases and potentially all DNA binding proteins.
Project description:In flowering plants, heterochromatin is demarcated by the histone variant H2A.W, elevated levels of the linker histone H1, and specific epigenetic modifications, such as high levels of DNA methylation at both CG and non-CG sites. How H2A.W regulates heterochromatin organization and interacts with other heterochromatic features is unclear. Here, we create an h2a.w null mutant via CRISPR-Cas9, h2a.w-2, to analyze the in vivo function of H2A.W. We find that H2A.W antagonizes deposition of H1 at heterochromatin and that non-CG methylation and accessibility are moderately decreased in h2a.w-2 heterochromatin. Compared to H1 loss alone, combined loss of H1 and H2A.W greatly increases accessibility and facilitates non-CG DNA methylation in heterochromatin, suggesting co-regulation of heterochromatic features by H2A.W and H1. Our results suggest that H2A.W helps maintain optimal heterochromatin accessibility and DNA methylation by promoting chromatin compaction together with H1, while also inhibiting excessive H1 incorporation.
Project description:Functional genomic states are maintained by reinforcing chromatin interactions that exclude the components of other states. Plant heterochromatin features methylation of histone H3 at lysine 9 (H3K9me) and extensive DNA methylation. However, DNA methylation is also catalyzed by a mostly euchromatic small RNA-directed pathway (RdDM) thought to seek H3K9me. How RdDM is excluded from H3K9me-rich heterochromatin is unclear. Here we show that without histone H1, RdDM enters heterochromatin, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically required for small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.
Project description:LSH/DDM1 enzymes are required for DNA methylation in higher eukaryotes and have poorly defined roles in genome maintenance in yeast, plants, and animals. The filamentous fungus Neurospora crassa is a tractable system that encodes a single LSH/DDM1 homolog (NCU06306). We report that the Neurospora LSH/DDM1 enzyme is encoded by mutagen sensitive-30 (mus-30), a locus identified in a genetic screen over 25 years ago. We show that MUS-30-deficient cells have normal DNA methylation, but are hypersensitive to the DNA damaging agent MMS (methyl methanesulfonate). MUS-30 is a nuclear protein, consistent with its predicted role as a chromatin remodeling enzyme, and levels of MUS-30 are increased following DNA damage. MUS-30 co-purifies with Neurospora WDR76, a homolog of yeast Changed Mutation Rate-1 and mammalian WD40 repeat domain 76. Deletion of wdr76 rescued MMS-hypersensitivity of Dmus-30 strains, demonstrating that the MUS-30-WDR76 interaction is functionally important. DNA damage-sensitivity of Dmus-30 is also partially suppressed by deletion of methyl adenine glycosylase-1, a component of the base excision repair machinery (BER); however, the rate of BER is not affected in Dmus-30 strains. It was reported that mammalian LSH is required for efficient double strand break (DSB) repair. We found that MUS-30-deficient cells were not defective for DSB repair, and we observed a negative genetic interaction between Dmus-30 and Dmei-3, the Neurospora RAD51 homolog required for homologous recombination. These data are consistent with a role for MUS-30 that is independent of DSB repair. Our findings demonstrate that LSH/DDM1 enzymes are key regulators of genome stability in eukaryotes. crf5-1 isolates (two replicates each from the F1 and F2 generation) were grown in Vogel's minimal medium for 48 hours. As a control, two replicates of the wildtype strain were grown under identical conditions.
Project description:Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints. DNA methylation, RNA and nucleosome sequencing data for diverse eukaryotes
Project description:Epigenetic inheritance refers to the faithful replication of DNA and histone modification independent of DNA sequence. Nucleosomes block access to DNA methyltransferase during S phase, unless they are remodeled by Decrease in DNA methylation 1 (DDM1[Lsh/HELLS]), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 activity results in replacement of the transcriptional histone variant H3.3 for the replicative variant H3.1. Inddm1mutants, DNA methylation can be restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals direct engagement at SHL2 with histone H3.3 at or near variant residues required for assembly, as well as with the deacetylated H4 tail. An N-terminal autoinhibitory domain binds H2A variants to allow remodeling, while a di-sulphide bond in the helicase domain is essential for activity in vivo and in vitro. Differential remodeling of H3 and H2A variants in vitro reflects preferential deposition in vivo. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1[Dnmt1]. DDM1 localization to the chromosome is blocked by H4K16 acetylation, which accumulates at DDM1 targets in ddm1 mutants, as does the sperm cell specific H3.3 variant MGH3 in pollen, which acts as a placeholder nucleosome and contributes to epigenetic inheritance.
Project description:Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ~147 bp of DNA wrapped ~1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ~160 bp, and then converts it to a core particle, containing ~147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these "proto-chromatosomes" are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.
Project description:LSH/DDM1 enzymes are required for DNA methylation in higher eukaryotes and have poorly defined roles in genome maintenance in yeast, plants, and animals. The filamentous fungus Neurospora crassa is a tractable system that encodes a single LSH/DDM1 homolog (NCU06306). We report that the Neurospora LSH/DDM1 enzyme is encoded by mutagen sensitive-30 (mus-30), a locus identified in a genetic screen over 25 years ago. We show that MUS-30-deficient cells have normal DNA methylation, but are hypersensitive to the DNA damaging agent MMS (methyl methanesulfonate). MUS-30 is a nuclear protein, consistent with its predicted role as a chromatin remodeling enzyme, and levels of MUS-30 are increased following DNA damage. MUS-30 co-purifies with Neurospora WDR76, a homolog of yeast Changed Mutation Rate-1 and mammalian WD40 repeat domain 76. Deletion of wdr76 rescued MMS-hypersensitivity of Dmus-30 strains, demonstrating that the MUS-30-WDR76 interaction is functionally important. DNA damage-sensitivity of Dmus-30 is also partially suppressed by deletion of methyl adenine glycosylase-1, a component of the base excision repair machinery (BER); however, the rate of BER is not affected in Dmus-30 strains. It was reported that mammalian LSH is required for efficient double strand break (DSB) repair. We found that MUS-30-deficient cells were not defective for DSB repair, and we observed a negative genetic interaction between Dmus-30 and Dmei-3, the Neurospora RAD51 homolog required for homologous recombination. These data are consistent with a role for MUS-30 that is independent of DSB repair. Our findings demonstrate that LSH/DDM1 enzymes are key regulators of genome stability in eukaryotes.