Project description:Animals respond to dietary changes by adapting their metabolism to available nutrients through insulin and insulin-like growth factor signalling. Restricting calorie intake generally extends life and health span, but Drosophila fed non-ideal sugars such as galactose are stressed and have shorter life spans. Here, we report that although these flies have shorter life spans, their offspring show significant life extension if switched to a normal sugar (glucose) diet. We define this as TGH or trans-generational hormesis, a beneficial effect that comes from a mild stress. We trace the effects to changes in stress responses in parents, ROS production, effects on lipid metabolism, and changes in chromatin and gene expression. We find that this mechanism is similar to what happens to the long lived Indy mutants on normal food, but surprisingly find that Indy is required for life span extension for galactose fed flies. Indy mutant flies grown on galactose do not live longer as do their siblings grown on glucose, rather overexpression of Indy rescues lifespan for galactose reared flies. We define a process where sugar metabolism can generate epigenetic changes that are inherited by offspring, providing a mechanism for how transgenerational nutrient sensitivities are passed on.
Project description:Animals respond to dietary changes by adapting their metabolism to available nutrients through insulin and insulin-like growth factor signalling. Restricting calorie intake generally extends life and health span, but Drosophila fed non-ideal sugars such as galactose are stressed and have shorter life spans. Here, we report that although these flies have shorter life spans, their offspring show significant life extension if switched to a normal sugar (glucose) diet. We define this as TGH or trans-generational hormesis, a beneficial effect that comes from a mild stress. We trace the effects to changes in stress responses in parents, ROS production, effects on lipid metabolism, and changes in chromatin and gene expression. We find that this mechanism is similar to what happens to the long lived Indy mutants on normal food, but surprisingly find that Indy is required for life span extension for galactose fed flies. Indy mutant flies grown on galactose do not live longer as do their siblings grown on glucose, rather overexpression of Indy rescues lifespan for galactose reared flies. We define a process where sugar metabolism can generate epigenetic changes that are inherited by offspring, providing a mechanism for how transgenerational nutrient sensitivities are passed on.
Project description:Familial risk in hypertensive renal disease has stimulated a search for genetic variation contributing to this risk. The current phase of population genetic studies has sought to associate genetic variation with disease in large populations by testing genotypes at a large number of common genetic variations in the genome, expecting that common genetic variants contributing to renal disease risk will be identified. These genome-wide association studies (GWAS) have been productive and are a clear technical success. It is also clear that narrowly defined loci and genes containing variation contributing to disease risk have been identified. Further extension and refinement of these GWAS are likely to extend this success. However, it is also clear that few if any variants with substantial effects accounting for the greatest part of heritability will be uncovered by GWAS. This raises an interesting biological question regarding where the remaining heritable risk may be located. One result of the progress of GWAS is likely to be a renewed interest in mechanisms by which related individuals can share and transmit traits independently of Mendelian inheritance. This paper reviews current progress in this area and considers other mechanisms by which familial aggregation of risk for renal disease may arise.