MicroRNA expression profile of MRC5-CAFs transfected with control siRNA (si-Ctrl) or Dicer1 specific siRNA (si-Dicer1) for 72 hr
Ontology highlight
ABSTRACT: Ovarian cancer (OC) remains the leading cause of death in patients with gynecological malignancy. An improved understanding of the genomics has led to the separation of OC into histologically and molecularly defined subgroups. Based on molecular profiling in OC patients, subtype with a reactivated tumor stroma presented the worst prognosis, emphasizing the importance of tumor microenvironment especially stromal fibroblasts in fueling OC progression. Dicer1 is well recognized as the microRNA (miR) synthesis machinery, playing a crucial role in cellular maturation and development, and was generally considered to be a tumor suppressor gene that inhibited tumor initiation and metastasis. Dicer1 expression pattern and exact biological function was seldom studied in the stromal compartment. There was a recent study demonstrating that Dicer1 was involved in mouse embryonic fibroblast (MEF) development and maturation. Therefore, we are inspired to explore the expression and function of Dicer1 in stromal fibroblasts of OC patients. In this study, mRNA and microRNA gene expression profiling were conducted for MRC5-CAFs after silencing of Dicer1. By comparing the expression data of MRC5-CAFs transfected with control siRNA (si-Ctrl) or with Dicer1 specific siRNA (si-Dicer1) for 72 hr, we identified a set of differential expressed mRNA and microRNA in MRC5-CAFs after Dicer1 knockdown. This study was the first to investigate Dicer1 influence of stromal fibroblast gene expression and the underlying regulation mechanism, which held great importance in complementing our understanding of Dicer1 in OC initiation and development, and raises potent therapeutical targets in controlling OC metastasis We used microarrays to profile the microRNA expression of MRC5-CAFs before and after Dicer1 knockdown, in order to identify microRNA alteration exerted by Dicer1 in the context of stromal fibroblasts.
ORGANISM(S): synthetic construct Homo sapiens
PROVIDER: GSE97937 | GEO | 2018/04/10
REPOSITORIES: GEO
ACCESS DATA