Project description:Translocations that drive overexpression of the oncogenic transcription factor MYB are molecular hallmarks of adenoid cystic carcinoma (ACC), a malignant salivary gland tumor. Surgical resection, whenever possible, is the standard therapy for ACC, but there are no available therapeutic options available if surgery fails. Here we performed a chemical genetic screen using a zebrafish embryo culture system and identified retinoic acid agonists as potent suppressors of c-myb. Retinoic acid treatment strongly decreased c-myb gene expression in U937 cells and suggested a direct transcriptional mechanism of regulation. Retinoic acid agonists strongly inhibited tumor growth in vivo in different ACC patient derived xenograft models. Analysis of the xenografts revealed a significant decrease in MYB binding at translocated enhancers, thereby disrupting the MYB positive feedback loop that drives ACC. Our findings identify an important role of retinoic acid in MYB regulation and as a potential new effective therapy for ACC.
Project description:Translocations that drive overexpression of the oncogenic transcription factor MYB are molecular hallmarks of adenoid cystic carcinoma (ACC), a malignant salivary gland tumor. Surgical resection, whenever possible, is the standard therapy for ACC, but there are no available therapeutic options available if surgery fails. Here we performed a chemical genetic screen using a zebrafish embryo culture system and identified retinoic acid agonists as potent suppressors of c-myb. Retinoic acid treatment strongly decreased c-myb gene expression in U937 cells and suggested a direct transcriptional mechanism of regulation. Retinoic acid agonists strongly inhibited tumor growth in vivo in different ACC patient derived xenograft models. Analysis of the xenografts revealed a significant decrease in MYB binding at translocated enhancers, thereby disrupting the MYB positive feedback loop that drives ACC. Our findings identify an important role of retinoic acid in MYB regulation and as a potential new effective therapy for ACC.
Project description:Pluripotent cells have been used to probe developmental pathways that are involved in genetic diseases and oncogenic events. To find new therapies that would target MYB-driven tumors, we developed a pluripotent zebrafish blastomere culture system. We performed a chemical genetic screen and identified retinoic acid agonists as suppressors of c-myb expression. Retinoic acid treatment also decreased c-myb gene expression in human leukemia cells. Translocations that drive overexpression of the oncogenic transcription factor MYB are molecular hallmarks of adenoid cystic carcinoma (ACC), a malignant salivary gland tumor with no effective therapy. Retinoic acid agonists inhibited tumor growth in vivo in ACC patient-derived xenograft models and decreased MYB binding at translocated enhancers, thereby potentially diminishing the MYB positive feedback loop driving ACC. Our findings establish the zebrafish pluripotent cell culture system as a method to identify modulators of tumor formation, particularly establishing retinoic acid as a potential new effective therapy for ACC.
Project description:ObjectiveThere are no effective systemic therapies for adenoid cystic cancer (ACC) and lack of tumor lines and mouse models have hindered drug development.We aim to develop MYB-activated models for testing new therapeutic agents.Materials and methodsWe studied new ACC patient-derived xenograft (PDX) models and generated a matched cell line from one patient. In addition, we generated a genetically-engineered MYB-NFIB mouse model (GEMM) that was crossed with Ink4a+/-/Arf+/- mice to study tumor spectrum and obtain tumor lines. Using human and murine ACC-like tumor lines, we analyzed MYB expression by RNA-Seq and immunoblot and tested efficacy of new MYB inhibitors.ResultsWe detected MYB-NFIB transcripts in both UFH1 and UFH2 PDX and observed tumor inhibition by MYB depletion using shRNA in vivo. We observed rapid loss of MYB expression when we cultured UFH1 in vitro, but were able to generate a UFH2 tumor cell line that retained MYB expression for 6 months. RNA-Seq expression detected an ACC-like mRNA signature in PDX samples and we confirmed an identical KMT2A/MLL variant in UFH2 PDX, matched cell line, and primary biopsy. Although the predominant phenotype of the MYB-NFIB GEMM was B-cell leukemia, we also generated a MYB-activated ACC-like mammary tumor cell line. We observed tumor inhibition using a novel MYB peptidomimetic in both human and murine tumor models.ConclusionsWe generated and studied new murine and human MYB-activated tumor samples and detected growth inhibition with MYB peptidomimetics. These data provide tools to define treatment strategies for patients with advanced MYB-activated ACC.
Project description:Adenoid cystic carcinoma (ACC) is the second most common cancer type arising from the salivary gland. The frequent occurrence of chromosome t(6;9) translocation leading to the fusion of MYB and NFIB transcription factor genes is considered a genetic hallmark of ACC. This inter-chromosomal rearrangement may encode multiple variants of functional MYB-NFIB fusion in ACC. However, the lack of an ACC model that harbors the t(6;9) translocation has limited studies on defining the potential function and implication of chimeric MYB-NFIB protein in ACC. This report aims to establish a MYB-NFIB fusion protein expressing system in ACC cells for in vitro and in vivo studies. RNA-seq data from MYB-NFIB translocation positive ACC patients' tumors and MYB-NFIB fusion transcript in ACC patient-derived xenografts (ACCX) was analyzed to identify MYB breakpoints and their frequency of occurrence. Based on the MYB breakpoint identified, variants of MYB-NFIB fusion expression system were developed in a MYB-NFIB deficient ACC cell lines. Analysis confirmed MYB-NFIB fusion protein expression in ACC cells and ACCXs. Furthermore, recombinant MYB-NFIB fusion displayed sustained protein stability and impacted transcriptional activities of interferon-associated genes set as compared to a wild type MYB. In vivo tumor formation analysis indicated the capacity of MYB-NFIB fusion cells to grow as implanted tumors, although there were no fusion-mediated growth advantages. This expression system may be useful not only in studies to determine the functional aspects of MYB-NFIB fusion but also in evaluating effective drug response in vitro and in vivo settings.
Project description:ObjectivesSalivary gland adenoid cystic carcinoma (ACC) is rare, aggressive, and challenging to treat. Many ACCs have a t(6;9) chromosomal translocation resulting in a MYB-NFIB fusion gene, but the clinical significance is unclear. The purposes of this study were to describe the clinicopathologic factors impacting survival and to determine the prevalence and clinical significance of MYB-NFIB fusion.Study designCase series.MethodsMedical records of patients treated for ACC of the head and neck from 1974 to 2011 were reviewed and clinicopathologic data recorded. Fluorescence in situ hybridization (FISH) was used to detect MYB rearrangement in archival tumor tissue as a marker of MYB-NFIB fusion.ResultsOne hundred fifty-eight patients were included, with median follow-up 75.1 months. Median overall survival was 171.5 months (95% confidence interval [CI] = 131.9-191.6), and median disease-free survival was 112.0 months (95% CI = 88.7-180.4). Advanced stage was associated with decreased overall survival (adjusted ptrend < 0.001), and positive margins were associated with decreased disease-free survival (adjusted hazard ratio [aHR] = 8.80, 95% CI = 1.25-62.12, P = 0.029). Ninety-one tumors were evaluable using FISH, and 59 (65%) had evidence of a MYB-NFIB fusion. MYB-NFIB positive tumors were more likely than MYB-NFIB negative tumors to originate in minor salivary glands (adjusted prevalence ratios = 1.51, 95% CI = 1.07-2.12, P = 0.019). MYB-NFIB tumor status was not significantly associated with disease-free or overall survival (hazard ratio [HR] = 1.53, 95% CI = 0.77-3.02, P = 0.22 and HR = 0.91, 95% CI = 0.46-1.83, P = 0.80, respectively, for MYB-NFIB positive compared with MYB-NFIB negative tumors).ConclusionStage and margin status were important prognostic factors for ACC. Tumors with evidence of MYB-NFIB fusion were more likely to originate in minor salivary glands, but MYB-NFIB tumor status was not significantly associated with prognosis.Level of evidence4.
Project description:OBJECTIVES:Limited availability of validated human adenoid cystic carcinoma (ACC) cell lines has hindered the mechanistic understanding of the pathobiology of this malignancy and the development of effective therapies. The purpose of this work was to generate and characterize a human ACC cell line. MATERIAL AND METHODS:Immediately after surgery, a tumor fragment from a minor salivary gland from the tongue of a female Caucasian was minced, dissociated, and a single cell suspension was plated in fibronectin-coated flasks. A culture medium containing bovine brain extract and rhEGF was optimized for these cells. Whole exome sequencing was used to evaluate the presence of MYB-NFIB translocation. RESULTS:The University of Michigan-Human Adenoid Cystic Carcinoma (UM-HACC)-2A cells showed continuous growth in monolayers for at least 180 in vitro passages while maintaining epithelial morphology. Short-tandem repeat (STR) profiling confirmed a 100% match to patient DNA. Whole exome sequencing revealed the presence of the MYB-NFIB fusion in UM-HACC-2A cells, which was confirmed by PCR analysis. Western blots revealed high expression of epithelial markers (e.g. E-cadherin, EGFR, pan-cytokeratin) and proteins associated with ACC (e.g. c-Myb, p63). Developmental therapeutic studies showed that UM-HACC-2A cells were resistant to cisplatin (IC50?=?44.7?µM) while more responsive to paclitaxel (IC50?=?0.0006?µM). In a pilot study, we observed that UM-HACC-2A cells survived orthotopic transplantation into the submandibular gland. Notably, one of the mice injected with UM-HACC-2A cells exhibited lung metastasis after 6?months. CONCLUSION:UM-HACC-2A is a MYB-NFIB fusion-positive ACC cell line that is suitable for mechanistic and developmental therapeutics studies.
Project description:Translocation events are frequent in cancer and may create chimeric fusions or 'regulatory rearrangements' that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps highlight distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in alternate ACC lineages.