Project description:Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation.
Project description:Histone H4 undergoes extensive post-translational modifications (PTMs) at its N-terminal tail. Many of these PTMs profoundly affect the on and off status of gene transcription. The molecular mechanism by which histone PTMs modulate genetic and epigenetic processes is not fully understood. In particular, how a PTM mark affects the presence and level of other histone modification marks needs to be addressed and is essential for better understanding the molecular basis of histone code hypothesis. To dissect the interplaying relationship between different histone modification marks, we investigated how individual lysine acetylations and their different combinations at the H4 tail affect Arg-3 methylation in cis. Our data reveal that the effect of lysine acetylation on arginine methylation depends on the site of acetylation and the type of methylation. Although certain acetylations present a repressive impact on PRMT1-mediated methylation (type I methylation), lysine acetylation generally is correlated with enhanced methylation by PRMT5 (type II dimethylation). In particular, Lys-5 acetylation decreases the activity of PRMT1 but increases that of PRMT5. Furthermore, circular dichroism study and computer simulation demonstrate that hyperacetylation increases the content of ordered secondary structures at the H4 tail region. These findings provide new insights into the regulatory mechanism of Arg-3 methylation by H4 acetylation and unravel the complex intercommunications that exist between different the PTM marks in cis. The divergent activities of PRMT1 and PRMT5 with respect to different acetyl-H4 substrates suggest that type I and type II protein-arginine methyltransferases use distinct molecular determinants for substrate recognition and catalysis.
Project description:Post-translational modifications of histones play a key role in DNA-based processes, like transcription, by modulating chromatin structure. N-terminal acetylation is unique among the numerous histone modifications because it is deposited on the N-alpha amino group of the first residue instead of the side-chain of amino acids. The function of this modification and its interplay with other internal histone marks has not been previously addressed. Here, we identified N-terminal acetylation of H4 (N-acH4) as a novel regulator of arginine methylation and chromatin silencing in Saccharomyces cerevisiae. Lack of the H4 N-alpha acetyltransferase (Nat4) activity results specifically in increased deposition of asymmetric dimethylation of histone H4 arginine 3 (H4R3me2a) and in enhanced ribosomal-DNA silencing. Consistent with this, H4 N-terminal acetylation impairs the activity of the Hmt1 methyltransferase towards H4R3 in vitro. Furthermore, combinatorial loss of N-acH4 with internal histone acetylation at lysines 5, 8 and 12 has a synergistic induction of H4R3me2a deposition and rDNA silencing that leads to a severe growth defect. This defect is completely rescued by mutating arginine 3 to lysine (H4R3K), suggesting that abnormal deposition of a single histone modification, H4R3me2a, can impact on cell growth. Notably, the cross-talk between N-acH4 and H4R3me2a, which regulates rDNA silencing, is induced under calorie restriction conditions. Collectively, these findings unveil a molecular and biological function for H4 N-terminal acetylation, identify its interplay with internal histone modifications, and provide general mechanistic implications for N-alpha-terminal acetylation, one of the most common protein modifications in eukaryotes.
Project description:BackgroundHistone methylation is believed to recruit specific histone-binding proteins.ResultsWe identified SRP68/72 heterodimers as major nuclear proteins whose binding of histone H4 tail is inhibited by H4R3 methylation.ConclusionSRP68/72 are novel histone H4-binding proteins.SignificanceUncovers a novel chromatin regulatory function for SRP68/72 and suggests that histone arginine methylation may function mainly in inhibiting rather than recruiting effector proteins. Arginine methylation broadly occurs in the tails of core histones. However, the mechanisms by which histone arginine methylation regulates transcription remain poorly understood. In this study we attempted to identify nuclear proteins that specifically recognize methylated arginine 3 in the histone H4 (H4R3) tail using an unbiased proteomic approach. No major nuclear protein was observed to specifically bind to methylated H4R3 peptides. However, H4R3 methylation markedly inhibited the binding of two proteins to H4 tail peptide. These proteins were identified as the SRP68 and SRP72 heterodimers (SRP68/72), the components of the signal recognition particle (SRP). Only SRP68/72, but not the SRP complex, bound the H4 tail peptide. SRP68 and SRP72 bound the H4 tail in vitro and associated with chromatin in vivo. The chromatin association of SRP68 and SRP72 was regulated by PRMT5 and PRMT1. Both SRP68 and SRP72 activated transcription when tethered to a reporter via a heterologous DNA binding domain. Analysis of the genome-wide occupancy of SRP68 identified target genes regulated by SRP68. Taken together, these results demonstrate a role of H4R3 methylation in blocking the binding of effectors to chromatin and reveal a novel role for the SRP68/SRP72 heterodimer in the binding of chromatin and transcriptional regulation.
Project description:Arginine methylation of histone H3 and H4 plays important roles in transcriptional regulation in eukaryotes such as yeasts, fruitflies, nematode worms, fish and mammals; however, less is known in plants. In the present paper, we report the identification and characterization of two Arabidopsis thaliana protein arginine N-methyltransferases, AtPRMT1a and AtPRMT1b, which exhibit high homology with human PRMT1. Both AtPRMT1a and AtPRMT1b methylated histone H4, H2A, and myelin basic protein in vitro. Site-directed mutagenesis of the third arginine (R3) on the N-terminus of histone H4 to lysine (H4R3N) completely abolished the methylation of histone H4. When fused to GFP (green fluorescent protein), both methyltransferases localized to the cytoplasm as well as to the nucleus. Consistent with their subcellular distribution, GST (glutathione transferase) pull-down assays revealed an interaction between the two methyltransferases, suggesting that both proteins may act together in a functional unit. In addition, we demonstrated that AtFib2 (Arabidopsis thaliana fibrillarin 2), an RNA methyltransferase, is a potential substrate for AtPRMT1a and AtPRMT1b, and, furthermore, uncovered a direct interaction between the protein methyltransferase and the RNA methyltransferase. Taken together, our findings implicate AtPRMT1a and AtPRMT1b as H4-R3 protein arginine N-methyltransferases in Arabidopsis and may be involved in diverse biological processes inside and outside the nucleus.