Reprogramming of human somatic cells to pluripotency with defined factors
Ontology highlight
ABSTRACT: Pluripotency, the capacity of embryo-derived stem cells to generate all tissues in the organism, can be induced in somatic cells by nuclear transfer into oocyte, fusion with embryonic stem cells, and for male germ cells by cell culture alone. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4, and Myc) to yield induced Pluripotent Stem (iPS) cells. Using the same four factors, we have derived iPS cells from human embryonic stem cell-derived fibroblasts, primary human fetal cells, and diverse cells of neonatal and adult human origin. The human iPS cells manifest the colony morphology, gene expression patterns, and epigenetic characteristics of human Embryonic Stem (hES) cells, and form well-differentiated teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogram human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture. Biological replicates: GSM248201 and GSM248202; GSM248205 and GSM248206; GSM248207 and GSM248208; GSM248209 and GSM248210; GSM248211 and GSM248212; GSM248213 and GSM248214. Sample descriptions: H1-OGN: ES cells expressing GFP-NEO marker under OCT4 promoter dH1f: differentiated H1-OGN fibroblasts dHcf16: differentiated H1-OGN cloned fibroblasts MRC5: fetal lung fibroblasts BJ1: neonatal fibroblasts Keywords: cellular reprogramming
ORGANISM(S): Homo sapiens
PROVIDER: GSE9832 | GEO | 2007/12/10
SECONDARY ACCESSION(S): PRJNA103803
REPOSITORIES: GEO
ACCESS DATA