Project description:Embryologically the tooth is derived from both the ectoderm and neural crest (ectomesenchyme). It is often used as a model to study how epithelialmesenchymal interactions can control differentiation and morphogenesis. During early development organs of ectodermal origin share both a set of signalling molecules and exhibit common morphological features, subsequently proceeding along separate developmental programs.<br><br>Tooth development is a continuous process that can be divided into the initiation -, bud -, cap -, and bell-stages. In mice, tooth development begins at embryonic day 11.5 (E11.5), by thickening of the dental epithelium, while mineralization of enamel and dentin in first molar starts at postnatal day 0 (P0) (5). A multistep and complex process of the gene expression are involved in the early stage of tooth development. So far expression of more than 1300 genes and/or proteins have been detected during tooth germ development by microarrays/immunocytochemistry/in situ hybridization. Studies with mutant mice have identified a number of genes that regulate tooth development and morphology. For example, deficiency of Lef-1 or P63 arrests tooth development at early stages. Deficiency of Msx1 or Pax9 results in arrest of tooth development at the bud stage , while deficiency of Runx2/Cbfa1 or Sp3 inhibits cyto-differentiation of ameloblasts and/or odontoblasts. Shh is required for normal growth and morphogenesis, but is not essential for cyto-differentiation of the ameloblast and odontoblast populations. Ameloblastin and amelogenin knock-out mice develop severe enamel hypoplasia with abnormal ameloblast differentiation. <br><br>Recently, new connections between retinoid metabolism and PPAR responses have been identified. It has also been shown that endogenous retinoic acid is necessary for the initiation of odontogenesis , and that some of the genes that catalyze the oxidation of retinaldehyde into retinoic acid, exhibit distinct patterns of expression in developing murine teeth. Little is known about functions of PPAR-a as regards tooth germs or mature teeth. It is, however, likely that mitochondrial oxidative metabolism well as fatty acid metabolism is enhanced in late odontogenesis. These are metabolic activities which in other tissues are stimulated by PPAR-a agonists.<br><br>For this reason it was of interest to carry out comparative gene expression profiling of the first molar tooth germs of PPAR-a knock-out mouse and of the corresponding wild-type mice. The results suggest marked differences in gene expression, parts of which may be associated with an observed hypomineralization of enamel in the mature PPAR-a knock-out murine tooth.
Project description:One tooth of a lamprey and one piece of trunc skin was lysed and analysed for its protein content. The samples were generously provided by the Museum of Natural History Vienna. The samples were stored in ethanol and the origin of the specimen is not known.
Project description:Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1−/− mice exhibit developmental arrest of all tooth germs at the bud stage, however, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1−/− and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1−/− and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of Dkk in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of Dkk alone was insufficient to rescue tooth morphogenesis in Msx1−/− mice, pharmacological inhibition of Dkk in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1−/− mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway drives tooth organogenesis by activating Wnt signaling via regulation of the secreted Wnt antagonists.
Project description:Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1−/− mice exhibit developmental arrest of all tooth germs at the bud stage, however, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1−/− and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1−/− and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of Dkk in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of Dkk alone was insufficient to rescue tooth morphogenesis in Msx1−/− mice, pharmacological inhibition of Dkk in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1−/− mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway drives tooth organogenesis by activating Wnt signaling via regulation of the secreted Wnt antagonists.
Project description:The goal of the study was to compare gene expression of P0 wild-type and P0 Satb2-/- cortices. Total RNAs were isolated from P0 cortices dissected from wild-type and Satb2-/- mice (n=3 for each genotype), following Qiagen RNAeasy kit instruction.Sequence libraries were made following Illumina RNA TruSeq library preparation guide.The libaries were pair-end sequenced (50nt per end). Differentially expressed genes were identified by DESEQ.
Project description:The goal of the study was to compare gene expression of P0 wild-type and P0 Fezf2-/- cortices. Total RNAs were isolated from P0 cortices dissected from wild-type and Fezf2-/- mice (n=3 for each genotype), following Qiagen RNAeasy kit instruction.Sequence libraries were made following Illumina RNA TruSeq library preparation guide.The libaries were pair-end sequenced (50nt per end). Differentially expressed genes were identified by DESEQ.
Project description:Gene expression profiling of mouse cerebellum in which the experimental strain conditionally lack the Smarca5 gene that encodes for the catalytic subunit of multiple chromatin remodeling complexes. Deletion of Smarca5 was restricted to those cells expressing Cre-recombinase driven by the Nestin promoter. Comparison of gene expression in P0 cerebella of Smarca5 cKO mice versus wild type controls. Three samples of each strain were used in a total of 4 replicates.
Project description:Gene expression profiles were generated from embryonic day 13.5 CD-1 mouse mandibular first molars whole tooth and non-tooth non-bone oral tissue. Three biological replicates from embryonic day 13.5 CD-1 mice were generated from pooled tissues across multiple mice. The tooth germ and non-tooth oral tissues were paired from the same embryos.