Project description:Immune-checkpoint-blockade (ICB)-mediated rejuvenation of exhausted T cells has emerged as a promising approach for treating various cancers and chronic infections. However, T cells that become fully exhausted during prolonged antigen exposure remain refractory to ICB-mediated rejuvenation. We report that blocking de novo DNA methylation in activated CD8 T cells allows them to retain their effector functions despite chronic stimulation during a persistent viral infection. Whole-genome bisulfite sequencing of antigen-specific murine CD8 T cells at the effector and exhaustion stages of an immune response identified progressively acquired heritable de novo methylation programs that restrict T cell expansion and clonal diversity during PD-1 blockade treatment. Moreover, these exhaustion-associated DNA-methylation programs were acquired in tumor-infiltrating PD-1hi CD8 T cells, and approaches to reverse these programs improved T cell responses and tumor control during ICB. These data establish de novo DNA-methylation programming as a regulator of T cell exhaustion and barrier of ICB-mediated T cell rejuvenation.
Project description:De novo DNA methylation establishes T cell exhaustion and inhibits PD-1 blockade-mediated T-cell rejuvenation. Expression profiling of chronically stimulated WT and Dnmt3a cKO antigen-specific CD8 T cells.
Project description:In plants, RNA-directed DNA methylation (RdDM), a mechanism where epigenetic modifiers are guided to target loci by small RNAs, plays a major role in silencing of transposable elements (TEs) to maintain genome integrity. So far, two RdDM pathways have been identified: RNA Polymerase IV (PolIV)-RdDM and RNA-dependent RNA Polymerase 6 (RDR6)-RdDM. PolIV-RdDM involves a self-reinforcing feedback mechanism that maintains TE silencing, but cannot explain how epigenetic silencing is first initiated. A function of RDR6-RdDM is to reestablish epigenetic silencing of active TEs, but it is unknown if this pathway can induce DNA methylation at naïve, non-TE loci. To investigate de novo establishment of RdDM, we have used virus-induced gene silencing (VIGS) of an active flowering Wageningen epiallele. Using genetic mutants we show that unlike PolIV-RdDM, but like RDR6-RdDM, establishment of VIGS-mediated RdDM requires PolV and DRM2 but not Dicer like-3 and other PolIV pathway components. DNA methylation in VIGS is likely initiated by a process guided by virus-derived small (s) RNAs that are 21/22-nt in length and reinforced or maintained by 24-nt sRNAs. We demonstrate that VIGS-RdDM as a tool for gene silencing can be enhanced by use of mutant plants with increased production of 24-nt sRNAs to reinforce the level of RdDM.
Project description:HOXB13, a homeodomain transcription factor, critically regulates androgen receptor (AR) activities and androgen-dependent prostate cancer (PCa) growth. However, its functions in AR-independent contexts remain elusive. Here we report HOXB13 interaction with histone deacetylase HDAC3, which is disrupted by the HOXB13 G84E mutation that has been associated with early-onset PCa. Independently of AR, HOXB13 recruits HDAC3 to lipogenic enhancers to catalyze histone deacetylation and suppress lipogenic regulators such as fatty acid synthase. Analysis of human tissues reveals that the HOXB13 gene is hypermethylated and downregulated in approximately 30% of metastatic castration-resistant PCa. HOXB13 loss or G84E mutation leads to lipid accumulation in PCa cells, thereby promoting cell motility and xenograft tumor metastasis, which is mitigated by pharmaceutical inhibition of fatty acid synthase. In summary, we present evidence that HOXB13 recruits HDAC3 to suppress de novo lipogenesis and inhibit tumor metastasis and that lipogenic pathway inhibitors may be useful to treat HOXB13-low PCa.
Project description:SignificanceMost patients with bladder cancer do not respond to ICB targeting of the PD-L1 signaling axis. Our modeling applied a de novo resistance signature to show that tumor-infiltrating myeloid cells promote poor treatment response in a TGFβ-dependent mechanism.
Project description:Programmed death-ligand 1 (PD-L1) and its receptor, programmed cell death-1 (PD-1), are important negative regulators of immune cell activation. Therapeutically targeting PD-1/PD-L1 in diffuse large B-cell lymphoma (DLBCL) patients with a single agent has limited activity, meriting a deeper understanding of this complex biology and of available PD-L1 clinical assays. In this study, we leveraged 2 large de novo DLBCL phase 3 trials (GOYA and MAIN) to better understand the biologic and clinical relevance of PD-L1 in de novo DLBCL. PD-L1 was expressed on myeloid cells in 85% to 95% of DLBCL patients (depending on staining procedure), compared with 10% on tumor cells, and correlated with macrophage gene expression. PD-L1 did not identify high-risk patients in de novo DLBCL; it correlated with STAT3, macrophage gene expression, and improved outcomes among a subset of patients. These results may help identify immunologically distinct DLBCL subsets relevant for checkpoint blockade. GOYA and MAIN trials were registered at www.clinicaltrials.gov as #NCT01287741 and #NCT00486759, respectively.
Project description:Certain human traits such as neurodevelopmental disorders (NDs) and congenital anomalies (CAs) are believed to be primarily genetic in origin. However, even after whole-genome sequencing (WGS), a substantial fraction of such disorders remain unexplained. We hypothesize that some cases of ND-CA are caused by aberrant DNA methylation leading to dysregulated genome function. Comparing DNA methylation profiles from 489 individuals with ND-CAs against 1534 controls, we identify epivariations as a frequent occurrence in the human genome. De novo epivariations are significantly enriched in cases, while RNAseq analysis shows that epivariations often have an impact on gene expression comparable to loss-of-function mutations. Additionally, we detect and replicate an enrichment of rare sequence mutations overlapping CTCF binding sites close to epivariations, providing a rationale for interpreting non-coding variation. We propose that epivariations contribute to the pathogenesis of some patients with unexplained ND-CAs, and as such likely have diagnostic relevance.
Project description:RING1 is an E3-ubiquitin ligase that is involved in epigenetic control of transcription during development. It is a component of the polycomb repressive complex 1, and its role in that complex is to ubiquitylate histone H2A. In a 13-year-old girl with syndromic neurodevelopmental disabilities, we identified a de novo mutation, RING1 p.R95Q, which alters a conserved arginine residue in the catalytic RING domain. In vitro assays demonstrated that the mutant RING1 retains capacity to catalyze ubiquitin chain formation, but is defective in its ability to ubiquitylate histone H2A in nucleosomes. Consistent with this in vitro effect, cells of the patient showed decreased monoubiquitylation of histone H2A. We modeled the mutant RING1 in Caenorhabditis elegans by editing the comparable amino acid change into spat-3, the suggested RING1 ortholog. Animals with either the missense mutation or complete knockout of spat-3 were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance. Relevant to our patient, animals heterozygous for either the missense or knockout allele also showed neuronal defects. Our results support three conclusions: mutation of RING1 is the likely cause of a human neurodevelopmental syndrome, mutation of RING1 can disrupt histone H2A ubiquitylation without disrupting RING1 catalytic activity, and the comparable mutation in C. elegans spat-3 both recapitulates the effects on histone H2A ubiquitylation and leads to neurodevelopmental abnormalities. This role for RING1 adds to our understanding of the importance of aberrant epigenetic effects as causes of human neurodevelopmental disorders.