Project description:Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signalling molecules. 45 functionally important molecules were knocked down in A375 melanoma cells by siRNA. Then the gene expression profiles of these A375 cells, along with untreated cells and sRNA control treated cells were analysed by microarrays.
Project description:Identify transcriptionnally and translationally regulated mRNA in melanoma parental and persister cells In this dataset, we include expression data of A375 melanoma drug-naïve parental cells and A375 melanoma persister cells that survived from BRAF and MEK inhibition. The expression data are studied in both total RNA and polysome-bounded RNA.
Project description:Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signalling molecules.
Project description:MITF plays critical role in development and differentiation of melanocytes and in the context of melanoma, as a lineage survival oncogene. Given its crucial role in melanoma biology, it is very difficult to generate complete knock-out (KO) of MITF and in our hands, those that were generated appear to behave differently than the effect observed using siRNA mediated knock-down, possibly indicative of selection. In order to overcome the limitation of the transient effect of siRNA and study the effect of MITF depletion over a longer period of time, we carried out transcriptomic analyses of Doxycycline inducible shMITF knock down after 8 days in 2 melanoma cell lines MeWo (CVCL_0445) and SkMel 28 (CVCL_0526)
Project description:BRAF-inhibitor (BRAFi)-resistance compromises long term survivorship of malignant melanoma patients, and mutant NRAS is a major mediator of BRAFi-resistance. We have employed NanoString nCounterTM transcriptomic analysis of isogenic human malignant melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E/NRASQ61 versus BRAFi-resistant A375-BRAFV600E/NRASQ61K), identifying modulation of specific gene expression networks as a function of NRASQ61K-status.