Reprogramming of rabbit induced pluripotent stem cells toward Inner Cell Mass cells and chimeric competency with Krüppel-like factors
Ontology highlight
ABSTRACT: Rabbit induced pluripotent stem cells (rbiPSCs) essentially display the characteristic features of primed pluripotency as defined in rodents and primates. In this study, we reprogrammed rbiPSCs using human Krüppel-like factors (KLFs) 2 and 4 and cultured them in a medium supplemented with fetal calf serum and leukemia inhibitory factor. These cells (designated rbEKA) were propagated by enzymatic dissociation for at least 30 passages, during which they maintained a normal karyotype. This new culturing protocol resulted in transcriptional and epigenetic reconfiguration, as evidenced by the expression of transcription factors and histone marks associated with naïve pluripotency. Furthermore, microarray analysis of rbiPSCs, rbEKA cells, rabbit ICM cells, and rabbit epiblast revealed that the global gene expression profile of the reprogrammed rbiPSCs was more similar to that of rabbit ICM and epiblast cells. Injection of rbEK cells into 8-cell and 16-cell stage rabbit embryos resulted in extensive colonization of ICM in 10% mid-blastocysts (E4) and embryonic disk in 1.4% pre-gastrulae (E6). Thus, these results indicate that KLF2 and KLF4 triggered the conversion of rbiPSCs into epiblast-like, embryo colonization-competent PSCs. Our results highlight some of the requirements to achieve bona fide chimeric competency.
ORGANISM(S): Oryctolagus cuniculus
PROVIDER: GSE99562 | GEO | 2018/05/30
REPOSITORIES: GEO
ACCESS DATA