Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer: Expression Arrays
Ontology highlight
ABSTRACT: Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (also known as NKX2-1), previously linked to normal lung development and function. When amplified, TITF1 exhibited increased expression at both the RNA and protein level. siRNA-mediated knockdown of TITF1 in lung cancer cell lines with amplification led to reduced cell proliferation, manifested by both decreased cell-cycle progression and increased apoptosis. Our findings indicate that TITF1 amplification and overexpression contribute to lung cancer cell proliferation rates and survival, and implicate TITF1 as a lineage-specific oncogene in lung cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Cell Line Keywords: Logical Set
Project description:Summary: Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (also known as NKX2-1), previously linked to normal lung development and function. When amplified, TITF1 exhibited increased expression at both the RNA and protein level. siRNA-mediated knockdown of TITF1 in lung cancer cell lines with amplification led to reduced cell proliferation, manifested by both decreased cell-cycle progression and increased apoptosis. Our findings indicate that TITF1 amplification and overexpression contribute to lung cancer cell proliferation rates and survival, and implicate TITF1 as a lineage-specific oncogene in lung cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Cell Line Keywords: Logical Set
Project description:Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (also known as NKX2-1), previously linked to normal lung development and function. When amplified, TITF1 exhibited increased expression at both the RNA and protein level. siRNA-mediated knockdown of TITF1 in lung cancer cell lines with amplification led to reduced cell proliferation, manifested by both decreased cell-cycle progression and increased apoptosis. Our findings indicate that TITF1 amplification and overexpression contribute to lung cancer cell proliferation rates and survival, and implicate TITF1 as a lineage-specific oncogene in lung cancer. This SuperSeries is composed of the SubSeries listed below.
Project description:Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (also known as NKX2-1), previously linked to normal lung development and function. When amplified, TITF1 exhibited increased expression at both the RNA and protein level. siRNA-mediated knockdown of TITF1 in lung cancer cell lines with amplification led to reduced cell proliferation, manifested by both decreased cell-cycle progression and increased apoptosis. Our findings indicate that TITF1 amplification and overexpression contribute to lung cancer cell proliferation rates and survival, and implicate TITF1 as a lineage-specific oncogene in lung cancer. This SuperSeries is composed of the following subset Series: GSE9994: Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer: Expression Arrays GSE10025: Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer: aCGH Arrays Keywords: SuperSeries Refer to individual Series
Project description:Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (also known as NKX2-1), previously linked to normal lung development and function. When amplified, TITF1 exhibited increased expression at both the RNA and protein level. siRNA-mediated knockdown of TITF1 in lung cancer cell lines with amplification led to reduced cell proliferation, manifested by both decreased cell-cycle progression and increased apoptosis. Our findings indicate that TITF1 amplification and overexpression contribute to lung cancer cell proliferation rates and survival, and implicate TITF1 as a lineage-specific oncogene in lung cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Cell Line Keywords: Logical Set cDNA microarrays from the Stanford Functional Genomics Facility were used to perform gene expression profiling on 33 non-small cell lung cancer (NSCLC) cell lines, 1 immortalized and 2 non-immortalized lung epithelial cell lines. Mann-Whitney U-Test (p=0.046) was performed to demonstrate that TITF1 increased expression was correlated with TITF1 gene amplification (as shown by aCGH analysis). NHBEC, SAEC and BEAS-2B are Normal lung epithelial cell lines, the others are Lung cancer cell lines Using regression correlation
Project description:Summary: Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (also known as NKX2-1), previously linked to normal lung development and function. When amplified, TITF1 exhibited increased expression at both the RNA and protein level. siRNA-mediated knockdown of TITF1 in lung cancer cell lines with amplification led to reduced cell proliferation, manifested by both decreased cell-cycle progression and increased apoptosis. Our findings indicate that TITF1 amplification and overexpression contribute to lung cancer cell proliferation rates and survival, and implicate TITF1 as a lineage-specific oncogene in lung cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Cell Line Keywords: Logical Set cDNA microarrays from the Stanford Functional Genomics Facility were used to perform array based Comparative Genomic Hybridization (aCGH) analysis on 52 non-small cell lung cancer (NSCLC) cell lines and 76 NSCLC tumors (36 adenocarcinomas including 2 metastases, and 40 squamous cell carcinomas including 1 metastasis). In addition, this dataset includes 6 immortalized and 3 non-immortalized lung epithelial cell lines and 1 male vs. female genomic DNA for hybridization control. Map positions for arrayed cDNA clones were assigned using the NCBI genome assembly, accessed through the UCSC genome browser database (NCBI Build 36). The most frequent focal DNA amplification not associated with a previously known oncogene occurred at cytoband 14q13.3 where TITF1 resides. The sample labeled normal is a "Normal male vs.female DNA" comparison; the samples: SAEC, HBEC3-UI, HBEC5-UI, HBEC2-KT, HBEC3-KT, HBEC4-KT, HBEC5-KT, HBEC2-E, BEAS-2B are Normal lung epithelial cell lines; samples starting with L are all Lung tumor samples and all the rest are Lung cancer cell lines. Computed
Project description:Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein level, and strong immunostaining was observed in 25 of 54 (46%) primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and implicate GATA6 as a lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Tissue type: cancer xenograft from diff tissues Keywords: Logical Set
Project description:Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein level, and strong immunostaining was observed in 25 of 54 (46%) primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and implicate GATA6 as a lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Tissue type: cancer xenograft from diff tissues Keywords: Logical Set cDNA microarrays from the Stanford Functional Genomics Facility were used to perform gene expression profiling on 28 out of 31 of the exocrine pancreatic cancer and all 6 distal bile duct cancer xenografts. Using regression correlation
Project description:Mouse models of cancer recapitulate many of the molecular and biological features of the human disease. We sought to exploit these experimental merits in a systematic comparative proteomics search for circulating proteins associated with lung tumor development. In-depth quantitative proteomics was applied to plasmas from three mouse models of lung adenocarcinoma driven by mutant EGFR or Kras or induced by urethane exposure and a mouse model of small cell lung cancer driven by loss of Trp53 and Rb. To further refine our lung cancer-specific and broad carcinoma signatures, we intersected these lung cancer proteome profiles with those from other well-established mouse models of pancreatic, ovarian, colon, prostate and breast cancer, as well as two mouse models of inflammation. A set of proteins regulated by Titf1/Nkx2-1, a master transcription factor in cells from the peripheral airways and a known lineage-survival oncogene in lung cancer was identified in plasmas of mouse models of lung adenocarcinoma. An EGFR network of proteins was discerned in the plasma of mice with lung tumors driven by a mutant human EGFR. Levels of these proteins returned toward baseline upon treatment with a tyrosine kinase inhibitor. Moreover, a distinct plasma signature was uncovered in the Trp53/Rb mutant small cell lung cancer model that included a set of proteins associated with neuroendocrine development. Our studies have identified novel plasma protein signatures among molecularly or histopathologically defined lung cancer subtypes. siRNA transfection experiments were performed in NCI-H3255 and HCC4019 lung adenocarcinoma cell lines using ON-TARGETplus SMARTpool small interfering RNAs (siRNAs) targeting TITF1 (L-019105-01-0005) along with a negative control (ON-TARGETplus siCONTROL nontargeting siRNA pool; D-001810-10-05) obtained from Dharmacon. 400000 cells were seeded in antibiotic-free RPMI-1640 media supplemented with 10% FBS, in 6-well culture plates. The next day, cells were transfected at a final concentration of 100nM siRNA using 6ul DharmaFECT 1 (Dharmacon) according to the manufacturer's instructions. 72-hours post-transfection, RNA was harvested using Trizol (Invitrogen) and protein using RIPA buffer for microarray expression and western blotting, respectively. RNA from TITF1 knockdown and control experiments was profiled by the MSKCC Genomics Core using the Illumina Human HT-12 v3.0 array platform according to manufacturer's instructions. Two biological replicates were profiled for each condition. Resulting data files were exported using GenomeStudio software, log2 transformed, quantile-normalized and analyzed using Partek Genomics Suite (v6.5). Average values of replicates for each gene were then compared between the TITF1 knockdown and non-targeting treatments for each cell line to identify candidate TITF1 regulated genes.
Project description:Title: CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer Summary: Breast cancer exhibits clinical and molecular heterogeneity, where expression-profiling studies have identified five major molecular subtypes. The basal-like subtype, expressing basal epithelial markers and negative for estrogen receptor (ER), progesterone receptor (PR) and HER2, is associated with higher overall levels of DNA copy number alteration (CNA), specific CNAs (like gain on chromosome 10p), and poor prognosis. Discovering the molecular genetic basis of tumor subtypes may provide new opportunities for therapy. To identify the driver oncogene on 10p associated with basal-like tumors, we analyzed genomic profiles of 172 breast carcinomas. The smallest shared region of gain spanned just seven genes at 10p13, including calcium/calmodulin-dependent protein kinase ID (CAMK1D), functioning in intracellular signaling but not previously linked to cancer. By microarray, CAMK1D was overexpressed when amplified, and by immunohistochemistry exhibited elevated expression in invasive carcinomas compared to carcinoma in situ. Engineered overexpression of CAMK1D in non-tumorigenic breast epithelial cells led to increased cell proliferation, and molecular and phenotypic alterations indicative of epithelial-mesenchymal transition (EMT), including loss of cell-cell adhesions and increased cell migration and invasion. Our findings identify CAMK1D as a novel amplified oncogene linked to EMT in breast cancer, and as a potential therapeutic target with particular relevance to clinically unfavorable basal-like tumors. Overall design: HEEBO oligonucleotide microarrays from the Stanford Functional Genomics Facility were used to perform gene expression profiling of four CAMK1D or control-transfected MCF10A breast epithelial cell line derivatives, in comparison to a universal RNA reference. Gene set enrichment analysis was used to identify CAMK1D-assocatied gene sets. Set of arrays that are part of repeated experiments Cell Line: CAMK1D or vector transfected MCF10A breast epithelial cell line derivatives Biological Replicate Computed
Project description:Title: CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer Summary: Breast cancer exhibits clinical and molecular heterogeneity, where expression-profiling studies have identified five major molecular subtypes. The basal-like subtype, expressing basal epithelial markers and negative for estrogen receptor (ER), progesterone receptor (PR) and HER2, is associated with higher overall levels of DNA copy number alteration (CNA), specific CNAs (like gain on chromosome 10p), and poor prognosis. Discovering the molecular genetic basis of tumor subtypes may provide new opportunities for therapy. To identify the driver oncogene on 10p associated with basal-like tumors, we analyzed genomic profiles of 172 breast carcinomas. The smallest shared region of gain spanned just seven genes at 10p13, including calcium/calmodulin-dependent protein kinase ID (CAMK1D), functioning in intracellular signaling but not previously linked to cancer. By microarray, CAMK1D was overexpressed when amplified, and by immunohistochemistry exhibited elevated expression in invasive carcinomas compared to carcinoma in situ. Engineered overexpression of CAMK1D in non-tumorigenic breast epithelial cells led to increased cell proliferation, and molecular and phenotypic alterations indicative of epithelial-mesenchymal transition (EMT), including loss of cell-cell adhesions and increased cell migration and invasion. Our findings identify CAMK1D as a novel amplified oncogene linked to EMT in breast cancer, and as a potential therapeutic target with particular relevance to clinically unfavorable basal-like tumors.