Project description:A collection of sputum samples collected from cystic fibrosis patients. These samples were collected daily from 6 patients for over 1 year.
Project description:Background: Assessments of airways inflammation in patients with chronic obstructive pulmonary diseases (COPD) require semi-invasive procedures and specialized sample processing know-how. In this study we aimed to set up and validate a novel non-invasive processing-free method for RNA sequencing (RNAseq) of spontaneous sputum samples collected from COPD patients. Methods: Spontaneous sputum samples were collected and stabilized, with or without selection of plugs and with or without the use of a stabilizer specifically formulated for downstream diagnostic testing (PrimeStore® Molecular Transport Medium). After 8-day storage at ambient temperature RNA was isolated according to an optimized RNAzol® method. An average percentage of fragments longer than 200 nucleotides (DV200) >30% and an individual yield >50ng were required for progression of samples to sequencing. Finally, to assess if the transcriptome generated would reflect a true endotype of COPD inflammation, the outcome of single-sample gene-set enrichment analysis (ssGSEA) was validated using an independent set of processed induced sputum samples Results: RNA extracted from spontaneous sputum using a stabilizer showed an average DV200 higher than 30%. 70% of the samples had a yield >50ng and were submitted to downstream analysis. There was a straightforward correlation in terms of gene expression between samples handled with or without separation of plugs. This was also confirmed by principal component analysis and ssGSEA. The top ten enriched pathways resulting from spontaneous sputum ssGSEA were associated to features of COPD, namely, inflammation, immune responses and oxidative stress; up to 70% of these were in common within the top ten enriched pathways resulting from induced sputum ssGSEA. Conclusion: This analysis confirmed that the typical COPD endotype was represented within spontaneous sputum and supported the current method as a non-invasive processing-free procedure to assess the level of sputum cell inflammation in COPD patients by RNAseq analysis.
Project description:Sputum cells collected before (visit 2) and after (visit 4) allergen challenge in asthma patients were isolated and RNA purified for analysis on gene expression arrays. Human subject recruitment part of NIH sponsored protocol as part of the Eosinophil Program Project Grant (PI: Dr. Nizar Jarjour) Sputum cell RNA collected from induced sputum cells before and 48 hours after whole-lung allergen challenge.
Project description:Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen allergic patients with and without allergen specific immunotherapy (AIT). Induced sputum samples of healthy controls (HC), AIT treated and untreated grass pollen allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2 levels were measured using ELISA. Two Hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2 levels correlated with ILC2 frequencies, secreted sputum IL13 levels, inflammatory cell load, sputum eosinophils and symptom burden.While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2-PTGER3 axis.
Project description:Sputum cells collected before (visit 2) and after (visit 4) allergen challenge in asthma patients were isolated and RNA purified for analysis on gene expression arrays. Human subject recruitment part of NIH sponsored protocol as part of the Eosinophil Program Project Grant (PI: Dr. Nizar Jarjour)
Project description:Gene expression profiling was performed on sputum samples obtained from asthmatics and matched healthy controls, to identify markers associated with various asthma subtypes. Sputum samples were collected from asthmatics and healthy controls and subjected to expression profiling using Affymetrix HG-U133Plus2.0 microarrays.
Project description:Little is known about the lung microbiome dynamics and host-microbiome interactions in relation to chronic obstructive pulmonary disease (COPD) exacerbations and in patient subgroups based on smoking status and disease severity. Here we performed a 16S ribosomal RNA survey on sputum microbiome from 16 healthy and 43 COPD subjects. For COPD subjects, a longitudinal sampling was performed from stable state to exacerbations, at two and six weeks post-exacerbations and at six months from first stable visit. Host sputum transcriptome were characterized for a subset of COPD patient samples.
Project description:Rationale: We recently demonstrated that the triple combination CFTR modulator therapy elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) improves lung ventilation and airway mucus plugging determined by multiple-breath washout and magnetic resonance imaging in CF patients with at least one F508del allele. However, effects of ELX/TEZ/IVA on viscoelastic properties of airway mucus, chronic airway infection and inflammation have not been studied. Objectives: To examine the effects of ELX/TEZ/IVA on airway mucus rheology, microbiome and inflammation in CF patients with one or two F508del alleles aged 12 years and older. Methods: In this prospective observational study, we determined sputum rheology, microbiome, inflammation markers and proteome before and 1, 3 and 12 months after initiation of ELX/TEZ/IVA. Measurements and Main Results: CF patients with at least one F508del allele and healthy controls were enrolled in this study. ELX/TEZ/IVA improved the elastic and viscous modulus of CF sputum. Further, ELX/TEZ/IVA improved the microbiome α-diversity and decreased the relative abundance of Pseudomonas aeruginosa (P<0.05) in CF sputum. ELX/TEZ/IVA also reduced IL-8 and free NE activity, and shifted the CF sputum proteome towards healthy. Conclusions: Our data demonstrate that ELX/TEZ/IVA improves sputum viscoelastic properties, chronic airway infection and inflammation in CF patients with at least one F508del allele, however, without reaching levels close to healthy.
Project description:Sputum expectorated by the pulmonary tuberculosis patients still remains a primary diagnostic specimen. The expression pattern of mycobacteria in sputum will lead to an insight of bacterial adaptation at the most highly transmissible stage of infection and can also help in identifying newer diagnostic as well as drug targets. Further, the identification of crossreactive gene targets from the sputum samples of other lung diseases will help to find the diagnostic candidates which will be highly specific to pulmonary tuberculosis.