ABSTRACT: This data set is downloaded from MetaboLights (http://www.ebi.ac.uk/metabolights/) accession number MTBLS264 Abstract:Metabolites present in human blood document individual physiological states influenced by genetic, epigenetic, and lifestyle factors. Using high-resolution liquid chromatography-mass spectrometry (LC-MS), we performed nontargeted, quantitative metabolomics analysis in blood of 15 young (29 ± 4 y of age) and 15 elderly (81 ± 7 y of age) individuals. Coefficients of variation (CV = SD/mean) were obtained for 126 blood metabolites of all 30 donors. Fifty-five RBC-enriched metabolites, for which metabolomics studies have been scarce, are highlighted here. We found 14 blood compounds that show remarkable age-related increases or decreases; they include 1,5-anhydroglucitol, dimethyl-guanosine, acetyl-carnosine, carnosine, ophthalmic acid, UDP-acetyl-glucosamine, N-acetyl-arginine, N6-acetyl-lysine, pantothenate, citrulline, leucine, isoleucine, NAD+, and NADP+. Six of them are RBC-enriched, suggesting that RBC metabolomics is highly valuable for human aging research. Age differences are partly explained by a decrease in antioxidant production or increasing inefficiency of urea metabolism among the elderly. Pearson’s coefficients demonstrated that some age-related compounds are correlated, suggesting that aging affects them concomitantly. Although our CV values are mostly consistent with those CVs previously published, we here report previously unidentified CVs of 51 blood compounds. Compounds having moderate to high CV values (0.4–2.5) are often modified. Compounds having low CV values, such as ATP and glutathione, may be related to various diseases because their concentrations are strictly controlled, and changes in them would compromise health. Thus, human blood is a rich source of information about individual metabolic differences. In human 24 hr metabolome observation (non-fasting) four volunteers were taken blood after overnight fast without breakfast at 9:00; 10:00, 13:00 and before lunch on the first day. Volunteers had lunches and dinners as usual on that day. On the second day after overnight fast the blood was sampled again at 9:00 at Kyoto university hospital laboratory. The great majority of metabolites hardly fluctuated (117 from 126 metabolites varied less than 2.5-fold on average in four volunteers). Data from three injections of the same sample and three samples prepared from the same donated blood are available under accession number MTBLS263. Whole blood metabolomic data from all 30 subjects are available under accession number MTBLS265. Plasma and RBC data from all 30 subjects can be found under MTBLS266 and MTBLS267, respectively.