GNPS human breast milk metabolomics (negative mode)
Ontology highlight
ABSTRACT: untargeted metabolomics (RPLC, negative mode) on human milk samples to investigate the presence of maternal drugs and dietary factors in breast milk
Project description:untargeted metabolomics (RPLC, positive mode) on human milk samples to investigate the presence of maternal drugs and dietary factors in breast milk
Project description:Exclusively breast-fed infants can exhibit clear signs of IgE or non IgE-mediated cow’s milk allergy. The definite characterization of dietary cow’s milk proteins (CMP) that survive the maternal digestive tract to be absorbed into the bloodstream and secreted into breast milk remains missing. The aim of this study was to assess the occurrence of CMP-derived peptides in breast milk, using antibody-independent methods. Using high performance liquid chromatography-high resolution mass spectrometry in blinded assays, we identified 11 cow’s milk-derived peptides, including two β-lactoglobulin (2 out 6 samples) and one αs1-casein (1 out 6 samples) fragments, in breast milk from mothers receiving a cup of bovine milk daily. The β-lactoglobulin (β-Lg) fragments, namely f42-54 and f42-57, were absent in milk from mothers who observed a strict dairy-free diet (6 samples). In contrast, neither intact nor hydrolyzed β-Lg was detected by Western blot or competitive ELISA tests. CMP-derived peptides rather than intact CMP may sensitize or elicit allergic responses in the neonate through mother’s milk. Immunologically active peptides from the maternal diet could be involved in priming the newborn’s immune system to drive tolerogenic response in neonates and infants.
Project description:Exclusively breast-fed infants can exhibit clear signs of IgE or non IgE-mediated cow’s milk allergy. The definite characterization of dietary cow’s milk proteins (CMP) that survive the maternal digestive tract to be absorbed into the bloodstream and secreted into breast milk remains missing. The aim of this study was to assess the occurrence of CMP-derived peptides in breast milk, using antibody-independent methods. Using high performance liquid chromatography-high resolution mass spectrometry in blinded assays, we identified 11 cow’s milk-derived peptides, including two ?-lactoglobulin (2 out 6 samples) and one ?s1-casein (1 out 6 samples) fragments, in breast milk from mothers receiving a cup of bovine milk daily. The ?-lactoglobulin (?-Lg) fragments, namely f42-54 and f42-57, were absent in milk from mothers who observed a strict dairy-free diet (6 samples). In contrast, neither intact nor hydrolyzed ?-Lg was detected by Western blot or competitive ELISA tests. CMP-derived peptides rather than intact CMP may sensitize or elicit allergic responses in the neonate through mother’s milk. Immunologically active peptides from the maternal diet could be involved in priming the newborn’s immune system to drive tolerogenic response in neonates and infants.
Project description:Purpose:To present the miRNA expression profiles in giant panda milk exosomes across five lactation stages (0, 3, 7, 15 and 30 days after birth), aiming to provide new information for investigations into the physiological functions of the giant panda milk Methods: Three females were sampled in all, and each individual were sampled over multiple lactations, including 0, 3, 7, 15 and 30 days after delivery. Breast milk samples (5-10 ml) were collected from each stages. Total RNA isolated from individuals in five lactation stages (0, 7, 15 and 30 days after delivery) were pooled in equal quantities for each stage Results: Here, we illustrated the species and expression characteristics of exosome-loaded miRNAs existing in giant panda breast milk during distinct lactation periods, and highlighted the enrichment of immune- and development-related endogenous miRNAs in colostral and mature giant panda milk, which are stable even in certain hash conditions, like low pH and high concentration of RNAase, by the protection of extracellular vesicles.These findings indicate that breast milk may allow dietary intake of maternal miRNAs by infants for the regulation of postnatal development. We also demonstrated that the exogenous plant miRNA from the primary food source of giant panda (bamboo) were detected in the exosomes of giant panda breast milk, which were predicted to be of regulatory role in basic cell metabolism and neuron development. This result suggested that the dietary plant miRNAs were able to be absorbed by host cell and then secreted to body fluids as potential cross-kingdom regulators. Conclusions: Exosomal miRNAs in the giant panda breast milk may be the crucial maternal regulators for the development of intrinsic ‘slink’ newborn cubs.
Project description:Prior candidate gene studies have shown tumor suppressor DNA methylation in breast milk related with history of breast biopsy, an established risk factor for breast cancer. To further establish the utility of breast milk as a tissue-specific biospecimen for investigations of breast carcinogenesis we measured genome-wide DNA methylation in breast milk from women with and without a diagnosis of breast cancer in two independent cohorts. In epigenome-wide analyses we identified 58 differentially methylated CpG sites associated with breast cancer diagnosis in the prospectively collected milk samples from the breast that would develop cancer compared with women without a diagnosis of breast cancer (q-value < 0.05), using linear mixed effects models adjusted for history of breast biopsy, age, age of the baby, cell type proportion estimates, array chip, and subject as random effect. Nearly all sites associated with breast cancer diagnosis were hypomethylated in cases compared with controls, and CpG sites were enriched for CpG islands. In addition, inferred repeat element methylation was lower in breast milk DNA from cases compared to controls, and cases exhibited increased estimated epigenetic mitotic tick rate as well as DNA methylation age compared with controls. Breast milk has promise as a biospecimen for prospective assessment of disease risk, and for understanding the underlying molecular basis of breast cancer risk factors and improving primary and secondary prevention of breast cancer.
Project description:Maintenance of intestinal homeostasis requires a healthy relationship between the commensal gut microbiota and the host immune system. Breast milk supplies the first source of antigen-specific immune protection in the gastrointestinal tract of suckling mammals, in the form of secretory immunoglobulin A (SIgA). SIgA is transported across glandular and mucosal epithelial cells into external secretions by the polymeric immunoglobulin receptor (pIgR). Here, a breeding scheme with pIgR-sufficient and -deficient mice was used to study the effects of breast milk-derived SIgA on development of the gut microbiota and host intestinal immunity. Early exposure to maternal SIgA prevented the translocation of aerobic bacteria from the neonatal gut into draining lymph nodes, including the opportunistic pathogen Ochrobactrum anthropi. By the age of weaning, mice that received maternal SIgA in breast milk had a significantly different gut microbiota from mice that did not receive SIgA, and these differences were magnified when the mice reached adulthood. Early exposure to SIgA in breast milk resulted in a pattern of intestinal epithelial cell gene expression in adult mice that differed from that of mice that were not exposed to passive SIgA, including genes associated with intestinal inflammatory diseases in humans. Maternal SIgA was also found to ameliorate colonic damage caused by the epithelial-disrupting agent dextran sulfate sodium. These findings reveal unique mechanisms through which SIgA in breast milk may promote lifelong intestinal homeostasis, and provide additional evidence for the benefits of breastfeeding. We used microarrays to determine the effects of passive and active secretory IgA, in the presence or absence of the epithelial-disrupting agent dextran sulfate sodium, on gene expression in intestinal epithelial cells of mice
Project description:Maintenance of intestinal homeostasis requires a healthy relationship between the commensal gut microbiota and the host immune system. Breast milk supplies the first source of antigen-specific immune protection in the gastrointestinal tract of suckling mammals, in the form of secretory immunoglobulin A (SIgA). SIgA is transported across glandular and mucosal epithelial cells into external secretions by the polymeric immunoglobulin receptor (pIgR). Here, a breeding scheme with pIgR-sufficient and -deficient mice was used to study the effects of breast milk-derived SIgA on development of the gut microbiota and host intestinal immunity. Early exposure to maternal SIgA prevented the translocation of aerobic bacteria from the neonatal gut into draining lymph nodes, including the opportunistic pathogen Ochrobactrum anthropi. By the age of weaning, mice that received maternal SIgA in breast milk had a significantly different gut microbiota from mice that did not receive SIgA, and these differences were magnified when the mice reached adulthood. Early exposure to SIgA in breast milk resulted in a pattern of intestinal epithelial cell gene expression in adult mice that differed from that of mice that were not exposed to passive SIgA, including genes associated with intestinal inflammatory diseases in humans. Maternal SIgA was also found to ameliorate colonic damage caused by the epithelial-disrupting agent dextran sulfate sodium. These findings reveal unique mechanisms through which SIgA in breast milk may promote lifelong intestinal homeostasis, and provide additional evidence for the benefits of breastfeeding. We used microarrays to determine the effects of passive and active secretory IgA, in the presence or absence of the epithelial-disrupting agent dextran sulfate sodium, on gene expression in intestinal epithelial cells of mice A breeding scheme was used that involved crosses between mouse dams and sires that were deficient or sufficient for expression of the polymeric immunoglobulin receptor (Pigr), a protein that is required for transport of secretory IgA (SIgA) into external secretions. Offspring of these crosses were genotyped for Pigr alleles, and littermate offspring were distributed into 4 groups based on early exposure to passive SIgA in mother's milk (P-yes and P-no) and ability to carry out Pigr-mediated endogenous transport of active SIgA (A-yes and A-no). Seventy-day-old gender-matched Pigr+/- and Pigr-/- offspring of Pigr+/- and Pigr-/- dams were left untreated or given 2% dextran sulfate sodium (DSS) in drinking water for 8 days. Colonic epithelial cells were isolated, and total cellular RNA was purified. RNA was pooled from 3 mice for each of 2 biological replicates for microarray analysis.
Project description:Breastfeeding has been associated with long lasting health benefits. Nutrients and bioactive components of human breast milk promote cell growth, immune development, and shield the infant gut from insults and microbial threats. The molecular and cellular events involved in these processes are ill defined. We have established human pediatric enteroids and interrogated maternal milk’s impact on epithelial cell maturation and function in comparison with commercial infant formula. Colostrum applied apically to pediatric enteroid monolayers reduced ion permeability, stimulated epithelial cell differentiation, and enhanced tight junction function by upregulating occludin amount. Breast milk heightened the production of antimicrobial peptide -defensin 5 by goblet and Paneth cells, and modulated cytokine production, which abolished apical release of pro-inflammatory GM-CSF. These attributes were not found in commercial infant formula. Epithelial cells exposed to breast milk elevated apical and intracellular pIgR amount and enabled maternal IgA translocation. Proteomic data revealed a breast milk-induced molecular pattern associated with tissue remodeling and homeostasis. Using a novel ex vivo pediatric enteroid model, we have identified cellular and molecular pathways involved in human milk-mediated improvement of human intestinal physiology and immunity.
Project description:Breast milk is a complex liquid that enriched in immunological components and affect the development of the infant immune system. Exosomes, the membranous vesicles of endocytic origin, are ubiquitously in various body fluids which can mediate intercellular communication. MicroRNAs (miRNAs), a well-defined group of non-coding small RNAs, in human breast milk are packaged inside exosomes. Here, we present the identification of miRNAs in human breast milk exosomes using deep sequencing technology. We found that the immune-related miRNAs are enriched in breast milk exosomes, and are resistant to the general harsh conditions.
Project description:Breast milk is a complex liquid that enriched in immunological components and affect the development of the infant immune system. Exosomes, the membranous vesicles of endocytic origin, are ubiquitously in various body fluids which can mediate intercellular communication. MicroRNAs (miRNAs), a well-defined group of non-coding small RNAs, in human breast milk are packaged inside exosomes. Here, we present the identification of miRNAs in human breast milk exosomes using deep sequencing technology. We found that the immune-related miRNAs are enriched in breast milk exosomes, and are resistant to the general harsh conditions. Four small RNA libraries in human breast milk exosomes from four healthy women (30 +/- 0.9 years old, primiparity) when the infant were aged at 60 days were sequenced.