Project description:Transcriptional profiling of 3D-retinas differentiated from mouse iPS cells comparing vehicle control- with 4-OHT-treated. 4-OHT is an inverse agonist of estrogen-related receptor beta (ERRβ), a rod-enriched transcription factor responsible for maintenance of rod photoreceptor cells and the treatment induces photoreceptor specific cell death in the 3D-retinas. Goal was to understand the mechanism of 4-OHT-induced degeneration of photoreceptor cells in the 3D-retinas. 4-OHT-induced gene expression in the 3D-retinas was measured at DD 26 when the photoreceptor cells were degenerated. Two-condition experiment, vehicle control- vs. 5 µM 4-OHT-treated 3D-retinas. Biological replicates: each sample has 24 3D-retinas and 1 replicate.
Project description:Transcriptional profiling of 3D-retinas differentiated from mouse iPS cells comparing vehicle control with 4-OHT-treated w/o supplements. 4-OHT is an inverse agonist of estrogen-related receptor beta (ERRβ), a rod-enriched transcription factor responsible for maintenance of rod photoreceptor cells and the treatment induces photoreceptor specific cell death in the 3D-retinas. Goal was to understand the mechanism of protective effects of representative ophthalmic supplements for treating the photoreceptor degeneration. 4-OHT w/o supplements-induced gene expression in the 3D-retinas was measured at DD 25 when the photoreceptor cells started to be degenerated. Four-condition experiment, vehicle control- vs. 5 µM 4-OHT- vs. 5 µM 4-OHT with 400 µM vitamin E- vs. 5 µM 4-OHT with 200 nM lutein-treated 3D-retinas. Biological replicates: each sample has 24 3D-retinas and 1replicate.
Project description:Transcriptional profiling of 3D-retinas differentiated from mouse iPS cells comparing vehicle control- with 4-OHT-treated. 4-OHT is an inverse agonist of estrogen-related receptor beta (ERRβ), a rod-enriched transcription factor responsible for maintenance of rod photoreceptor cells and the treatment induces photoreceptor specific cell death in the 3D-retinas. Goal was to understand the mechanism of 4-OHT-induced degeneration of photoreceptor cells in the 3D-retinas.
Project description:3D LCMS using C18 functionality in all three dimensions (HFBA-pH10-Formic Acid).
1D LC-MS, 90 minutes; 2D LC-MS, 21 fractions x 90 minutes; 3D LC-MS, 126
fractions x 90 minutes. Jurkat cell digest.
Project description:Transcriptional profiling of 3D-retinas differentiated from mouse iPS cells comparing vehicle control with 4-OHT-treated w/o supplements. 4-OHT is an inverse agonist of estrogen-related receptor beta (ERRβ), a rod-enriched transcription factor responsible for maintenance of rod photoreceptor cells and the treatment induces photoreceptor specific cell death in the 3D-retinas. Goal was to understand the mechanism of protective effects of representative ophthalmic supplements for treating the photoreceptor degeneration.
Project description:Preclinical cancer drug discovery efforts have employed two-dimensional (2D)-cell-based assay models, which fail to forecast in vivo efficacy and contribute to a lower success rates of clinical approval. Three-dimensional (3D) cell culture models are recently expected to bridge the gap between 2D and in vivo models. We have developed novel 3D culture method that improves the growth of spheroid-forming cancer cells under anchorage-independent condition by leveraging a feature of FP001. Gene microarrays were used to observe the global gene expression in A549 cells cultured with normal adhesion plate (2D, control) or with low adhesion plate (+FP001) and identified distinct classes of up or down-regulated genes. A549 cells were cultured for 5 days in three different conditions as follows. (1) Normal attachment plates with normal medium (as control), (2) low-attachment plates with normal medium, (3) low-attachment plates with FP001 containing medium. Each sample was collected three times.
Project description:To glean an appreciation of the holistic genetic activity in the gastrulating mouse embryo, we performed a genome-wide spatial transcriptome analysis (Stereo-seq), using a low-cell number sequencing protocol on laser microdissected samples of epiblast cells with retained positional address. The 3D transcriptome reveals that (i) the epiblast is partitioned into transcription domains corresponding to regions of epiblast where cells are endowed specifically with ectoderm and mesendoderm potency, (ii) novel lineage markers are identified as genes expressed in epiblast domains populated by cells displaying different lineage fates, (iii) functionally related gene regulatory circuitry and signaling pathways are acting in concert in the transcriptional domains, and (iv) the spatial information provides reference zipcodes for mapping the prospective address of cell samples from different embryos and stem cell lines. The quantified expression data can also be visualized as â3D digitized whole mount in situ hybridizationâ of all the expressed transcripts in the epiblast. (i) By using laser-microdissection, we carried out transcriptome profiling on embryo sections at a high resolution of ~20 cells per sample with the spatial information preserved. We then constructed a comprehensive spatial transcriptome map in the mid-gastrulation embryo that is visualized in a 3D embryonic model based on the sequencing data. Embryo position (A/L/P/R) and section (1-11) descriptors: A stands for laser capture microdissected samples from the anterior epiblast of the embryo; P for posterior; L for the left lateral epiblast of the embryo; R for the right lateral. The section is collected from distal to proximal, and the section 1 to 11 is the cryosection order, covering the whole embryonic part of a late mid-streak embryo. Section 1 is the most distal section and 11 is the most proximal section. (ii) Additional samples are RNA-seq data of 70 single cells from E7.0 mouse embryo. These 70 samples were randomly picked from the anterior or posterior embryonic half.