Project description:Long non-coding RNAs have been implicated in many of the hallmarks of cancer. We previously annotated lncRNA152 (lnc152; a.k.a. DRAIC) and demonstrated its roles in proliferation, cell cycle progression, and regulation of the estrogen signaling pathway in breast cancer cells. Herein, we found that lnc152 is highly upregulated in luminal breast cancers, but is downregulated in triple-negative breast cancers (TNBC). Using a set of complementary experimental approaches, we found that knockdown of lnc152 promotes cell migration and invasion in luminal breast cancer cell lines. In contrast, ectopic expression of lnc152 inhibits growth, migration, invasion, and angiogenesis in TNBC cell lines. In xenograft studies in mice, lnc152 inhibited the growth and metastasis of TNBC cells. Transcriptome analysis of the xenografts indicated that lnc152 downregulates genes regulating cancer-related phenotypes, including angiogenesis. Using RNA-pull down assays coupled with LC-MS/MS analysis, we identified RBM47, a known tumor suppressor protein in breast cancer, as a lnc152-interacting protein. We found that lnc152 suppresses the aggressive phenotypes of TNBC cells by regulating the expression of RBM47. Collectively, our results demonstrate that lnc152 is an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC.
Project description:Multiple sclerosis (MS) is characterized by a targeted attack on oligodendroglia (OLG) and myelin by immune cells, which are thought to be the main drivers of MS susceptibility. We found that immune genes exhibit a primed chromatin state in single mouse and human OLG in a non-disease context, compatible with transitions to immune-competent states in MS. We identified transcription factors as BACH1 and STAT1 involved in immune gene regulation in oligodendrocyte precursor cells (OPCs). A subset of immune genes present bivalency of H3K4me3/H3K27me3 in OPCs, with Polycomb inhibition leading to their increased activation upon interferon-gamma (IFN) treatment. Some MS susceptibility single-nucleotide polymorphisms (SNPs) overlap with these regulatory regions in mouse and human OLG. Treatment of mouse OPCs with IFN leads to chromatin architecture remodeling at these loci and altered expression of interacting genes. Thus, susceptibility for MS may involve OLG, which therefore constitute novel targets for immunological-based therapies for MS.
Project description:Multiple sclerosis (MS) is characterized by a targeted attack on oligodendroglia (OLG) and myelin by immune cells, which are thought to be the main drivers of MS susceptibility. We found that immune genes exhibit a primed chromatin state in single mouse and human OLG in a non-disease context, compatible with transitions to immune-competent states in MS. We identified transcription factors as BACH1 and STAT1 involved in immune gene regulation in oligodendrocyte precursor cells (OPCs). A subset of immune genes present bivalency of H3K4me3/H3K27me3 in OPCs, with Polycomb inhibition leading to their increased activation upon interferon-gamma (IFN) treatment. Some MS susceptibility single-nucleotide polymorphisms (SNPs) overlap with these regulatory regions in mouse and human OLG. Treatment of mouse OPCs with IFN leads to chromatin architecture remodeling at these loci and altered expression of interacting genes. Thus, susceptibility for MS may involve OLG, which therefore constitute novel targets for immunological-based therapies for MS.
Project description:Multiple sclerosis (MS) is characterized by a targeted attack on oligodendroglia (OLG) and myelin by immune cells, which are thought to be the main drivers of MS susceptibility. We found that immune genes exhibit a primed chromatin state in single mouse and human OLG in a non-disease context, compatible with transitions to immune-competent states in MS. We identified transcription factors as BACH1 and STAT1 involved in immune gene regulation in oligodendrocyte precursor cells (OPCs). A subset of immune genes present bivalency of H3K4me3/H3K27me3 in OPCs, with Polycomb inhibition leading to their increased activation upon interferon-gamma (IFN) treatment. Some MS susceptibility single-nucleotide polymorphisms (SNPs) overlap with these regulatory regions in mouse and human OLG. Treatment of mouse OPCs with IFN leads to chromatin architecture remodeling at these loci and altered expression of interacting genes. Thus, susceptibility for MS may involve OLG, which therefore constitute novel targets for immunological-based therapies for MS.
Project description:With thousands of chemicals in commerce and the environment, rapid identification of potential hazards is a critical need. Combining broad molecular profiling with targeted in vitro assays, such as high-throughput transcriptomics (HTTr) and receptor screening assays, could improve identification of chemicals that perturb key molecular targets associated with adverse outcomes. We aimed to link transcriptomic readouts to individual molecular targets and integrate transcriptomic predictions with orthogonal receptor-level assays in a proof-of-concept framework for chemical hazard prioritization. Transcriptomic profiles generated via TempO-Seq in U-2 OS and HepaRG cell lines were used to develop signatures comprised of genes uniquely responsive to reference chemicals for distinct molecular targets. These signatures were applied to 75 reference and 1,126 non-reference chemicals screened via HTTr in both cell lines. Selective bioactivity towards each signature was determined by comparing potency estimates against the bulk of transcriptomic bioactivity for each chemical. Chemicals predicted by transcriptomics were confirmed for target bioactivity and selectivity using available orthogonal assay data from US EPA’s ToxCast program. A subset of 37 selectively acting chemicals from HTTr that did not have sufficient orthogonal data were prospectively tested using one of five receptor-level assays. Of the 1,126 non-reference chemicals screened, 201 demonstrated selective bioactivity in at least one transcriptomic signature, and 57 were confirmed as selective nuclear receptor agonists. Chemicals bioactive for each signature were significantly associated with orthogonal assay bioactivity, and signature-based points-of-departure were equally or more sensitive than biological pathway altering concentrations in 81.2% of signature-prioritized chemicals. Prospective profiling found that 18 of 37 (49%) chemicals without prior orthogonal assay data were bioactive against the predicted receptor. Our work demonstrates that integrating transcriptomics with targeted orthogonal assays in a tiered framework can support Next Generation Risk Assessment by informing putative molecular targets and prioritizing chemicals for further testing. NOTE: this GEO entry only includes the HepaRG cell line data; the U-2 OS cell line data can be located via GEO accession number GSE274318.
Project description:Unveiling the regulatory pathways maintaining hepatic stellate cells (HSC) in a quiescent (q) phenotype is essential to develop new therapeutic strategies to treat fibrogenic diseases. To uncover the miRNA-mRNAs regulatory interactions in qHSCs, HSCs were FACS-sorted from healthy livers and activated HSCs were generated in vitro. MiRNA Taqman array analysis showed HSCs expressed a low number of miRNA, from which 46 were down-regulated and 212 up-regulated upon activation. Computational integration of miRNA and gene expression profiles revealed that 66% of qHSCs miRNAs correlated with more than 6 altered targeted mRNAs (17,28±10,7 targets/miRNA), whereas aHSC-associated miRNAs had an average of 1,49 targeted genes. Interestingly, interaction networks generated by miRNA-targeted genes in qHSCs were associated with key HSCs activation processes. Next, selected miRNAs were validated in healthy and cirrhotic human livers and miR-192 was chosen for functional analysis. Down-regulation of miR-192 in HSC was found to be an early event during fibrosis progression in mouse models of liver injury. Moreover, mimic assays for miR-192 in HSCs revealed its role in HSC activation, proliferation and migration. Together, these results uncover the importance of miRNAs in the maintenance of qHSC phenotype and form the basis for understanding the regulatory networks in HSCs. Transcriptomic profile derived from four quiescent hepatic stellate (QHSC), four activated hepatic stellate (AHSC), three liver sinusoidal endothelial (LSEC) and two hepatocytes cells (HEP).