Project description:mRNA sequencing in bacteria is challenging due to the abundance of ribosomal rRNA that cannot be easily removed prior to sequencing. While commercially available kits target specific rRNA sequences found in defined lists of common bacterial species, they are frequently inefficient when applied to other divergent species, including those from environmental isolates. Similar to the commercial kits, other common techniques for rRNA depletion typically employ large probe sets that tile full-length rRNA sequences; however, such approaches are both time consuming and expensive when applied to multiple species or complex consortia of non-model microbes. To overcome these limitations, we present EMBR-seq+, which employs less than twenty target oligonucleotides per rRNA molecule, and builds upon our previous rRNA depletion approach, EMBR-seq, through the addition of an RNase H depletion step, to achieve rRNA removal efficiencies of up to 99%. First, we applied EMBR-seq+ to monocultures of Escherichia coli, Geobacter metallireducens, and Fibrobacter succinogenes strain UWB7 to deplete rRNA to approximately 1-7% of the sequencing reads, demonstrating that the new method can be easily extended to diverse bacterial species. Further, in more complex co-cultures between F. succinogenes strain UWB7 and anerobic fungal species, we applied EMBR-seq+ to deplete both bacterial and fungal rRNA, with an approximately 4-fold improved bacterial rRNA depletion efficiency compared to a previous report using a commercial kit, thereby showing that the method can be effectively translated to non-model microbial mixtures. Notably, we also demonstrate that for microbial species with poorly annotated genomes and unknown rRNA sequences, the RNase H depletion component of EMBR-seq+ enables rapid iterations in probe design without requiring to start experiments from total RNA each time, and was key for depleting fungal rRNA to enrich the bacterial mRNA readout in co-cultures. Finally, efficient depletion of rRNA enabled systematic quantification of the reprogramming of the bacterial transcriptome when cultured in the presence of the anerobic fungi, Anaeromyces robustus and Caecomyces churrovis. We observed that F. succinogenes strain UWB7 transcribes nearly 200 carbohydrate-active enzyme (CAZyme) genes in both monoculture and co-culture conditions, with several lignocellulose-degrading CAZymes downregulated in the presence of an anerobic gut fungus. This finding is consistent with the premise that bacteria and fungi specialize in different aspects of biomass breakdown, such that the presence of one regulates the CAZyme production of the other. This also supports previous findings that the fungi release excess reducing sugars in the supernatant, which benefits other members of the microbial community. Thus EMBR-seq+ provides a new and detailed perspective of a rumen microbiome model system by dramatically improving the efficiency of mRNA sequencing, and more generally also enables high-throughput, cost-effective and rapid quantification of the transcriptome to gain functional insights into less-studied and non-model microbial systems.
Project description:Mouse small intestinal crypts were co-cultured with primary intestinal fibroblasts in Organoid Growth Media (OGM) with/without inhibitor for the prostaglandin E2 receptor Ptger4 (EP4), labeled respectively as “Ptger4-OFF” and “Ptger4-ON” conditions. Crypts co-cultured with fibroblasts in Ptger4-ON conditions (OGM containing DMSO vehicle control) acquired a spheroid morphology. Crypts co-cultured with fibroblasts in Ptger4-OFF conditions (OGM supplemented with Ptger4 inhibitor) developed into budding organoids. Fibroblasts were isolated from the small intestine of wild type mice. For the co-cultures 2 x 10e4 fibroblasts were seeded in 48-well plates overnight. Freshly isolated crypts (n = 500) were suspended in 1:1 Matrigel (Corning, 356231) and IntestiCult Organoid Growth Medium (Stem Cell Technologies, 06005) and added as an overlay on the fibroblasts. Crypts/fibroblasts were co-cultured with IntestiCult Organoid Growth Medium for 4 days. The ONO-AE3-208 Ptger4 (EP4) inhibitor (Cayman, 14522) dissolved in DMSO was added to the co-cultureson days 0 and 2 at a final concentration of 10 uM. DMSO was used as a vehicle control for the untreated co-cultures. On day 4, one pool of six Ptger4-ON co-cultures and one pool of six Ptger4-OFF co-cultures were subjected to the Drop-seq protocol.
Project description:Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. The goals and objectives of this study were 1.) to characterize and validate the molecular identity of human primary epithelial and stromal/mesenchymal breast cells maintained long-term in novel ex vivo culture conditions in serum free medium. 2.) To analyze changes in gene expression profiles of normal human primary epithelial and stromal/mesenchymal breast cells upon long-term ex vivo co-culture when compared to corresponding monocultures 3.) To study the dynamic reciprocity between normal human primary epithelial and stromal/mesenchymal breast cells. 4.) To identify critical molecular pathways and biomarkers controlling epithelial and/or stromal cell growth and quiescence. Human primary epithelial progenitor cells and mesenchymal stem cells bearing fluorescent tags were either co-cultured in novel ex vivo culture conditions on ECM coated meshes in serum free medium (M5) or cultured as monocultures in the same conditions for 30 days. The cultures were then dissociated and epithelial and stromal/mesenchymal cells from either co-cultures or monocultures separated by FACS. Gene expression profiling of epithelial or stromal/mesenchymal cells was performed. Clean gene expression profiles from three different epithelial and stromal/mesenchymal cell extracts either grown in co-cultures or monocultures were successfully obtained.
Project description:The use of microbiological cultures for diagnosing bacterial infections in young febrile infants have substantial limitations, including false positive and false negative cultures, and non-ideal turn-around times. Analysis of host genomic expression patterns (“RNA biosignatures”) in response to the presence of specific pathogens, however, may provide an alternate and potentially improved diagnostic approach. This study was designed to define bacterial and non-bacterial RNA biosignatures to distinguish these infections in young febrile infants.
Project description:Profiling of transcriptional changes in rat astrocytes when co-cultured with neurons: comparison of astrocytes cultured alone with astrocytes co-cultured with mouse hippocampal neurons. Co-cultured astrocytes are isolated using cold jet, a novel tool for these neuron-glia cultures. Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that at least part of the involved astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-induced astrocyte genes in vitro, we tested the effectiveness of the ‘cold jet’, a new method for separation of neurons from co-cultured astrocytes. The cold jet method is performed under ice-cold conditions and avoids protease-mediated isolation of astrocytes or time-consuming centrifugation, yielding intact astrocyte mRNA with approximately 90% of neuronal RNA removed. Using this method, we executed genome-wide profiling in which RNA derived from astrocyte-only cultures was compared with astrocyte RNA derived from differentiating neuron-astrocyte co-cultures. Data analysis revealed changes in expression of a large number of mRNAs and biological processes, including novel findings. Thus, cold jet is an efficient method to separate astrocytes from neurons in co-culture, and in this study reveals that neurons induce robust gene-expression changes in co-cultured astrocytes.