Project description:Full clinical data for a cohort of 199 individuals with acute coronary syndrome.
Untargeted serum metabolomics using the Metabolon platform for individuals with ACS (n=156).
Serum metabolomics using the Nightingale Health (NMR) platform for individuals with ACS and controls (ACS, n=191; controls, n=961).
Project description:Human iPSCs and NSCs were engineered by AAVS1 and/or C13 safe-harbor TALENs which mediated targeted integration of various reporter genes at single or dual safe-harbor loci. Multiple clones of targeted human iPSCs were used to compare with parental untargeted NCRM5 iPSCs. Polyclonal targeted human NSCs were used to compare with their parental untargeted NCRM1NSCs or H9NSCs. Total RNA obtained from targeted human iPSCs or NSCs compared to untargeted control iPSCs or NSCs.
Project description:Raw untargeted metabolomics profiled by Metabolon Inc. for 540 samples from healthy individuals. Files include sample names and run details which can be matched to their metagenomic sequencing samples from PRJEB11532 and PRJEB17643. Information regarding metabolite metadata is also available, including
Project description:Our previous studies identified an increase in the levels of the metabolite 1,5-anhydroglucitol (1,5-AG) in the plasma of patients with newly diagnosed B-ALL by untargeted metabolomics detection.Except for the direct influence of 1,5-AG on leukemia cells, the effect on macrophages is still unclear.We reported the application of RNA sequencing to determine the transcriptional response of murine macrophage Raw 264.7 cells in response to stimulate with 1,5-AG conditions.
Project description:RNAseq analysis was conducted to complement the targeted and untargeted metabolomics analysis of livers overexpressing the CoA-degrading enzyme Nudt7 or GFP (control). Lipid metabolism requires coenzyme A (CoA), which is found in multiple subcellular compartments including the peroxisomes. In the liver, CoA levels are dynamically adjusted between the fed and fasted states. The elevation in CoA levels that occurs during fasting is driven by increased synthesis but also correlates with decreased expression of Nudt7, the major CoA-degrading enzyme in the liver. Nudt7 resides in the peroxisomes and we overexpressed this enzyme in mouse livers to determine its effect on the size and composition of the hepatic CoA pool in the fed and fasted states. Nudt7 overexpression did not change total CoA levels but decreased the concentration of short-chain acyl-CoAs and choloyl-CoA in fasted livers, when endogenous Nudt7 activity was lowest. The effect on these acyl-CoAs correlated with a significant decrease in the hepatic bile acid content and in the rate of peroxisomal fatty acid oxidation, as estimated by targeted and untargeted metabolomics, combined with the measurement of fatty acid oxidation in intact hepatocytes. Identification of the CoA species and metabolic pathways affected the overexpression on Nudt7 in vivo supports the conclusion that the nutritionally-driven modulation of Nudt7 activity could contribute to the regulation of the peroxisomal CoA pool and peroxisomal lipid metabolism.