Project description:Pseudomonas fluorescens FW300-N2C3 was cultured in succinate minimal media (SMM) and analyzed for metabolites on LCMS with iron infusions of either 2 mM or 500 micromolar iron.
Project description:Transcriptomic profiling of Pseudomonas fluorescens Pf-5 comparing iron(II) chloride supplemented grown culture against non-iron treated grown culture in M9 minimal media Two-condition experiment, iron(II) chloride supplemented culture versus non-iron treated culture. 4 biological replicates including 3 technical replicates for one of the biological replicates. Swap-dye experiments were performed
Project description:Transcriptomic profiling of Pseudomonas fluorescens Pf-5 comparing zinc-limited culture against zinc-amended culture in M9 minimal media Two-condition experiment, non-zinc treated culture versus zinc sulphate supplemented culture. 3 biological replicates including 3 technical replicates for one of the biological replicate and 2 technical replicates for another biological replicate. Swap-dye experiments were performed
Project description:Transcriptomic profiling of Pseudomonas fluorescens Pf-5 comparing culture treated with 160 µg/mL tannic acid against non-treated culture grown in Mueller-Hinton media
Project description:Transcriptomic profiling of Pseudomonas fluorescens Pf-5 comparing culture treated with 20 µg/mL tannic acid against non-treated culture grown in Mueller-Hinton media
Project description:Transcriptomic profiling of Pseudomonas fluorescens Pf-5 comparing iron(III) chloride supplemented grown culture against non-iron treated grown culture in M9 minimal media Two-condition experiment, iron(III) chloride supplemented culture versus non-iron treated culture. 3 biological replicates including 3 technical replicates for one of the biological replicate and 2 technical replicates for another biological replicate. Swap-dye experiments were performed
Project description:Pseudomonas species are ubiquitous in plant-associated environments and produce an array of volatiles, enzymes and antimicrobials. The biosynthesis of many metabolites is regulated by the GacS/GacA two-component regulatory system. Transcriptome analysis of Pseudomonas fluorescens SBW25 revealed that 702 genes were differentially regulated (fold change>4, P<0.0001) in a gacS::Tn5 mutant, with 300 and 402 genes up- and down-regulated, respectively. Genes that were significantly down-regulated are involved in viscosin biosynthesis (viscABC), protease production (aprA), motility, biofilm formation, and secretory systems. Genes that were significantly up-regulated are involved in siderophore biosynthesis and oxidative stress. In contrast to previous studies with gac-mutants of other Pseudomonas species/strains, the gacS mutant of SBW25 inhibited growth of oomycete, fungal and bacterial pathogens significantly more than parental strain SBW25. A potential candidate for this enhanced antimicrobial activity was a large nonribosomal peptide synthetase (NRPS) gene cluster predicted to encode for an 8-amino-acid ornicorrugatin-like peptide. Site-directed mutagenesis of an NRPS gene in this cluster, however, did not lead to a reduction in the antimicrobial activity of the gacS mutant. Collectively these results indicate that a mutation in the GacS/GacA regulatory system causes major transcriptional changes in P. fluorescens SBW25 and significantly enhances its antimicrobial activities by yet unknown mechanisms. This expression study used total RNA recovered from four separate wild-type cultures of Pseudomonas fluorescens SBW25 and four separate cultures of the gacS mutant. Expression design was based on the updated genome sequence of Pseudomonas fluorescens SBW25, NC_012660.1 and associated plasmid pQBR0476 with nineteen 60-mer probe per gene. Each probe is replicated 3 times. The design includes random GC and other control probes.
Project description:Ensifer meliloti strains USDA 1021 and USDA 1157 were cultured in succinate minimal media (SMM) and then analyzed for metabolites with LCMS and an iron infusion.