Project description:Specific recognition and bacterial adhesion to host cells by uropathogenic E. coli (UPEC) are the first steps towards infection of epithelial tissue of the human urogenital system. Therefore, targeting of UPEC virulence factors, relevant for adhesion, is a promising approach for prevention of recurrent urinary tract infections (UTI). A fully characterized plant-derived aqueous extract from the leaves of Orthosiphon stamineus (OWE), a plant traditionally used in clinical practice in Europe and Asia for UTI, has been shown to exert strong antiadhesive effects under in vitro and in vivo conditions. For improved understanding of the underlying mechanisms transcriptome analysis of OWE-treated UPEC strain UTI89 by Illumina sequencing and cross-validation of these data by qPCR indicated significant down-regulation of bacterial adhesins (curli, type 1-, F1C- and P fimbriae) and of the chaperone-mediated protein folding/unfolding and pilus assembly process; in contrast flagellar and motility-related genes were upregulated. We conclude that OWE transforms the sessile lifestyle of bacteria into a motile one and therefore disables bacterial attachment to the host cell. Additionally, the extract inhibited gene expression of multiple iron acquisition systems (Ent, Fep, Feo, Fhu, Chu, Sit, Ybt) concomitant with an upregulated expression of the ferric uptake regulator (Fur) repressor. The present study explains the antiadhesive and antiinfective effect of the plant extract by pinpointing specific biochemical and molecular targets.
Project description:Annona muricata L., include the leaves, is found to contain biologically active Annonaceous acetogenins and plant polyphenols that are important components of human diet and a number of them are considered to have chemopreventive and therapeutic properties against cancer.
To confirm previous findings in in vitro, animal study and traditionally use, a human, ex vivo and in vitro studies were conducted to evaluate the effects of consecutive ingestion of A. muricata leaves extract for eight weeks.
Project description:Many genes involve in pathogenicity and virulence are induced only in plant or in the presence of host components. Bean leaf extract was obtained from healthy bean leaves. In this work we investigated the effect of bean leaf extract on the transcriptomic profile of the bacterium, when grown at low temperature in minimal medium with or without extract from healthy bean leaves.
Project description:This study evaluated the variability of methylxanthine content of Ilex guayusa under different geographical, light, and age conditions, as an opportunity to emphasize the value of the chakra agroforestry system in the search for sustainable use of natural products with potential industrial applications.
Project description:Maize (Zea mays L.) is one of the major cereal crops worldwide. Increasing planting density is an effective way to improve crop yield. However, plants grown under high-density conditions compete for water, nutrients, and light, which often leads to changes in productivity. To date, few studies have determined the transcriptomic differences in maize leaves in response to different planting densities. This study examined the whole-genome expression patterns in the leaves of maize planted under high and low densities to identify density-regulated genes. Leaves at upper, ear, and lower stem nodes were collected at the grain-filling stage of the maize hybrid Xianyu335 grown under low-density planting and high-density planting. In total, 72, 733, and 1,739 differentially expressed genes (DEGs) were identified in the respective upper, ear, and lower leaves under HDP. Upregulated and downregulated DEGs in the upper and lower leaves were similar in number, whereas upregulated DEGs in the ear leaves were significantly higher in number than the downregulated DEGs. Functional analysis indicated that genes responding to HDP-related stresses were mediated by pathways involving four phytohormones responsible for metabolism and signaling, osmoprotectant biosynthesis, transcription factors, and fatty acid biosynthesis and protein kinases, which suggested that these pathways are affected by the adaptive responses mechanisms underlying the physiological and biochemical responses of the leaves of maize planted at high density.
Project description:The present study aims to evaluate the response of the three Mediterranean local grapevines ‘Garnacha Blanca’, ‘Garnacha Tinta’, and ‘Macabeo’ to treatments with biocontrol products (BPs), a botanical extract (Akivi, Dittrichia viscosa extract) and a beneficial microorganism (Bacillus UdG, Bacillus velezensis). A combination of transcriptomics and metabolomics approaches were chosen in order to study grapevine gene expression and to identify gene marker candidates, as well as, to determine grapevine metabolites differentially concentrated in response to BPs treatments. Grapevine plants were cultivated in greenhouse controlled conditions and submitted to the treatments, and thereafter, leaves were sampled 24h after treatment to conduct gene expression study by RNA-sequencing for ‘Garnacha Blanca’ leaves extract and by RT-qPCR for the three cultivars. Differentially expressed genes (DEGs) were investigated for both treatments and highly influenced DEGs were selected to be tested in the three cultivars as treatment gene markers. In addition, extraction of leaf components was performed to quantify metabolites such as phytohormones, organic acids, and phenols. Considering all the upregulated and downregulated genes and enhanced metabolites concentrations, the treatments had an effect on jasmonic acid, ethylene, and phenylpropanoids defense pathways. In addition, several DEG markers were identified presenting a stable overexpression after the treatments in the three grapevine cultivars. These gene markers could be used to monitor the activity of the products in field treatments in future research. Further research will be necessary to confirm these first results under field conditions.
Project description:Investigation of whole genome gene expression level changes in leaves of apple seedlings (Golden delicious) 3 days after treatment by tomato cutin monomer extract (CME) versus formulation blank (FB). CME is a formulated extract enriched of hydroxy fatty acids from tomato cuticle