Project description:The human LncRNA microarray analysis of the 6 monocytes samples from Coronary Artery Disease patients and non Coronary Artery Disease 3 Coronary Artery Disease patients and 3 non-Coronary Artery Disease donors
Project description:The human LncRNA microarray analysis of the 6 monocytes samples from Coronary Artery Disease patients and non Coronary Artery Disease
Project description:We took samples of subcutaneous adipose tissue from the sternum (SAT) and epicardial adipose tissue (EAT) from a site adjacent to the right coronary artery in cases with coronary disease and controls without coronary disease. Cases had significant coronary disease and were undergoing coronary artery bypass surgery. Controls all had coronary angiograms and did not have significant coronary disease.
Project description:Background. In experimental setting the concept of myocardial preconditioning-by hyperoxia has been introduced and different intracellular protective mechanisms and their effects have been described. To study whether similar protective phenotype can be induced by hyperoxia also in humans, gene expression profile after hyperoxic exposure was analyzed. Methods and Findings. Adult patients were randomized to be ventilated with either FiO2 0.4 (n=14) or 1.0 (n=10) for 60 minutes before coronary artery bypass grafting. A tissue sample from the right atrial appendage was taken for gene analysis and expression profile analysis on genome wide level by gene chip analysis was applied. Exposure to > 96% oxygen for 60 minutes significantly changed the expression of 20 different genes, including upregulation of two different humanins - MTRNR2L2 and MTRNR2L8, and activated a “cell survival” network as detected by Ingenuity Pathway Analyses. Conclusions. Administration of > 96% oxygen for 1 hour changes gene expression in the myocardium of the patients with coronary artery disease and may enhance cell survival capability. Background. In experimental setting the concept of myocardial preconditioning-by hyperoxia has been introduced and different intracellular protective mechanisms and their effects have been described. To study whether similar protective phenotype can be induced by hyperoxia also in humans, gene expression profile after hyperoxic exposure was analyzed. Methods and Findings. Adult patients were randomized to be ventilated with either FiO2 0.4 (n=14) or 1.0 (n=10) for 60 minutes before coronary artery bypass grafting. A tissue sample from the right atrial appendage was taken for gene analysis and expression profile analysis on genome wide level by gene chip analysis was applied. Exposure to > 96% oxygen for 60 minutes significantly changed the expression of 20 different genes, including upregulation of two different humanins - MTRNR2L2 and MTRNR2L8, and activated a “cell survival” network as detected by Ingenuity Pathway Analyses. Conclusions. Administration of > 96% oxygen for 1 hour changes gene expression in the myocardium of the patients with coronary artery disease and may enhance cell survival capability. 24 samples, 14 controls and 10 with intervention
Project description:Vascular endothelial cells play an important role in the development of coronary artery disease, their injury leads to coronary heart disease and atherosclerosis. This study aimed to elucidate the role of FOXO3-regulated target gene expression and alternative splicing in vascular endothelial cell injury in coronary artery disease
Project description:This SuperSeries is composed of the following subset Series: GSE20680: Whole Blood Cell Gene Expression Profiling in Patients with Coronary Artery Disease from the Cathgen Registry GSE20681: Whole Blood Cell Gene Expression Profiling in Patients with Coronary Artery Disease from the PREDICT Trial Refer to individual Series
Project description:Individualized outcome prediction classifiers were successfully constructed through expression profiling of a total of 2,500 miRNAs in 13 cardiovascular disease patients and 5 healthy controls In the study presented here, a well-defined cohort of 13 cardiovascular disease cases and 5 healthy controls was used to acquire expression profiles of a total of 2,500 unique genes.