Project description:Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease due to gradual motorneurons (MN) degeneration1. Among the processes associated to ALS pathogenesis, there is the formation of cytoplasmic inclusions produced by mutant protein aggregation, among which the RNA binding protein FUS. In this work we show that such inclusions are significantly reduced in number and dissolve faster when the RNA m6A content is diminished as a consequence of the m6A writer METTL3 knock-down. These effects were obtained observed both in neuronal cell lines and in iPSC-derived human motor neurons expressing mutant FUS. Importantly, stress granules formed in mutant conditionswhen mutant FUS is expressed/ALS condition showed a distinctive transcriptome with respect to control cells; interestingly, after METTL3 downregulation, it reverted to similar to control. Finally, we show that FUS inclusions are reduced also in patient-derived fibroblasts treated with STM-2457, a well characterized inhibitor of METTL3 activity, paving the way for its possible use for counteracting aggregate formation in ALS.
Project description:FUS is one of the pathogenic RNA-binding proteins for amyotrophic lateral sclerosis (ALS). We previously reported that FUS stabilized SynGAP mRNA at its 3’UTR and maintained spine maturation and cognitive function in mice. To elucidate whether this mechanism could be pathogenic for ALS, we identified SynGAP 3’UTR variant at the binding site of FUS, different from that in mice, from a multicenter cohort in Japan. Human induced pluripotent stem cells (hiPSC)-derived motor neurons with SynGAP variant showed spine abnormality with aberrant SynGAP splicing. To evaluate how SynGAP variant altered the access of RNA binding proteins to SynGAP 3'UTR, we performed pull down assay by using biotinylated RNA probes with or without the variant.
Project description:FUS, an RNA binding protein was recently implicated in Amyotrophic Lateral Sclerosis (ALS). ALS is a fatal neurodegenerative disease. We report the identification of the conserved neuronal RNA targets of FUS and the assessment of the impact of FUS depletion on the neuronal transcriptome. We identified that FUS regulates splicing of conserved intron containing transcripts. FUS retains or excludes the conserved intron by binding to them. Identification of FUS neuronal targets using normal human brain samples and mouse neurons
Project description:FUS, an RNA binding protein was recently implicated in Amyotrophic Lateral Sclerosis (ALS). ALS is a fatal neurodegenerative disease. We report the identification of the conserved neuronal RNA targets of FUS and the assessment of the impact of FUS depletion on the neuronal transcriptome. We identified that FUS regulates splicing of conserved intron containing transcripts. FUS retains or excludes the conserved intron by binding to them.
Project description:We report the binding sites of three FUS constructs: (1) The full-length protein (FL); (2) A deletion mutant consisting of amino acids 242-526 (CT); and (3) A aa 242-526 deletion mutant with ALS-associated P525L mutation and heterologous nuclear export signal (CTstar) with the aim to assess the role of protein-protein interactions on RNA-binding and to identify nuclear and cytoplasmic RNA-binding sites of Fused in Sarcoma (FUS).
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:Mutations in the RNA binding protein, Fused in Sarcoma (FUS), lead to amyotrophic lateral sclerosis (ALS), the most frequent form of motor neuron disease. Cytoplasmic aggregation and defective DNA repair machinery are etiologically linked to mutant FUS-associated ALS. Although FUS is involved in numerous aspects of RNA processing, little is understood about the pathophysiological mechanisms of mutant FUS. Here, we employed RNA-sequencing technology in Drosophila brains expressing FUS to identify significantly altered genes and pathways involved in FUS-mediated neurodegeneration.
Project description:We have identified a novel de novo variation in FUS gene in a sporadic juvenile ALS patient. FUS is an RNA-binding protein actively involved in various aspect of nucleic acid metabolism. We performed RNA-seq to identify altered transcriptome in juvenile ALS.