Project description:Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease due to gradual motorneurons (MN) degeneration1. Among the processes associated to ALS pathogenesis, there is the formation of cytoplasmic inclusions produced by mutant protein aggregation, among which the RNA binding protein FUS. In this work we show that such inclusions are significantly reduced in number and dissolve faster when the RNA m6A content is diminished as a consequence of the m6A writer METTL3 knock-down. These effects were obtained observed both in neuronal cell lines and in iPSC-derived human motor neurons expressing mutant FUS. Importantly, stress granules formed in mutant conditionswhen mutant FUS is expressed/ALS condition showed a distinctive transcriptome with respect to control cells; interestingly, after METTL3 downregulation, it reverted to similar to control. Finally, we show that FUS inclusions are reduced also in patient-derived fibroblasts treated with STM-2457, a well characterized inhibitor of METTL3 activity, paving the way for its possible use for counteracting aggregate formation in ALS.
Project description:FUS is one of the pathogenic RNA-binding proteins for amyotrophic lateral sclerosis (ALS). We previously reported that FUS stabilized SynGAP mRNA at its 3’UTR and maintained spine maturation and cognitive function in mice. To elucidate whether this mechanism could be pathogenic for ALS, we identified SynGAP 3’UTR variant at the binding site of FUS, different from that in mice, from a multicenter cohort in Japan. Human induced pluripotent stem cells (hiPSC)-derived motor neurons with SynGAP variant showed spine abnormality with aberrant SynGAP splicing. To evaluate how SynGAP variant altered the access of RNA binding proteins to SynGAP 3'UTR, we performed pull down assay by using biotinylated RNA probes with or without the variant.
Project description:FUS, an RNA binding protein was recently implicated in Amyotrophic Lateral Sclerosis (ALS). ALS is a fatal neurodegenerative disease. We report the identification of the conserved neuronal RNA targets of FUS and the assessment of the impact of FUS depletion on the neuronal transcriptome. We identified that FUS regulates splicing of conserved intron containing transcripts. FUS retains or excludes the conserved intron by binding to them. Identification of FUS neuronal targets using normal human brain samples and mouse neurons
Project description:FUS, an RNA binding protein was recently implicated in Amyotrophic Lateral Sclerosis (ALS). ALS is a fatal neurodegenerative disease. We report the identification of the conserved neuronal RNA targets of FUS and the assessment of the impact of FUS depletion on the neuronal transcriptome. We identified that FUS regulates splicing of conserved intron containing transcripts. FUS retains or excludes the conserved intron by binding to them.
Project description:We report the binding sites of three FUS constructs: (1) The full-length protein (FL); (2) A deletion mutant consisting of amino acids 242-526 (CT); and (3) A aa 242-526 deletion mutant with ALS-associated P525L mutation and heterologous nuclear export signal (CTstar) with the aim to assess the role of protein-protein interactions on RNA-binding and to identify nuclear and cytoplasmic RNA-binding sites of Fused in Sarcoma (FUS).
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:FUS, a major RNA binding protein with prominent roles in transcription and splicing, is mutated in agressive forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by muscle weakness and motor neuron degeneration. We show here that ALS-associated FUS mutations lead to ultrastructural defects in muscle biopsies of ALS-FUS patients, in particular in sarcomeres and mitochondria, that are recapitulated in iPSC-derived myocytes. Studies in mouse and Drosophila models demonstrate an evolutionary-conserved cell autonomous function of FUS in muscle development. Mechanistically, FUS is required for transcription of MEF2 dependent pathways and directly binds to the promoter of a subset of genes with binding sites for PEA3 family ETS transcription factors, in particular ETV5. We further show that FUS co-activates transcription of MEF2 dependent genes with ETV5. Importantly, FUS phase separates with ETV5 and MEF2A, and MEF2A binding to FUS is potentiated by ETV5. Last, Etv5 haploinsufficiency exacerbates muscle weakness in a knock-in model of ALS-FUS. Thus, FUS is required for muscle structure through its phase separation-dependent recruitment of ETV5 and MEF2, and this pathway is compromised in ALS-FUS.
Project description:TDP-43, FUS, and TAF15 are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We integrate CLIP-seq and RNA Bind-N-Seq technologies to discover that TAF15 binds to ~4,900 RNAs enriched for GGUA motifs. In the mouse brain, TAF15 and FUS, but not TDP-43, exhibit strikingly similar RNA binding profiles, yet they alter the expression of distinct mRNA populations upon their individual depletions. TAF15 has a minimal role in alternative splicing and instead affects RNA turnover, consistent with an enrichment of TAF15 binding sites in 3â?? untranslated regions. In human stem cell-derived motor neurons, loss of both TAF15 and FUS affected mRNAs distinct from those altered by loss of either protein alone, revealing redundant roles for TAF15 and FUS in maintaining mRNA levels. Furthermore, concomitant rather than individual depletion of TAF15 and FUS more closely resembles RNA profiles of motor neurons derived from FUS R521G ALS patients or from late-stage, sporadic ALS patients. Our study reveals convergent and divergent mechanisms by which FUS, TAF15 and TDP-43 affects RNA metabolism in neurological disease. RNA-seq, CLIP-seq and arrays in mouse and human against TAF15 knockdowns This Series represents RNA-seq sample(s).