ABSTRACT: To assure the phosphorylation of BIG3 by PKA, in vitro kinase assay to BIG3 fragments was done and phosphorylation site was detected by mass spectrometer.
Project description:Mapping DNase I hypersensitive sites (DHSs) within nuclear chromatin is a traditional and powerful method of identifying genetic regulatory elements. DHSs have been mapped by capturing the ends of long DNase I-cut fragments (>100,000 bp), or 100-1200 bp DNase I-double cleavage fragments (also called double-hit fragments). But next generation sequencing requires a DNA library containing DNA fragments of 100-500bp. Therefore, we have modified the double-hit method and use short DNA fragments to generate DNA libraries for next generation sequencing. We call this method Short DHS Assay (Short DNAse I Hypersensitive Site assay). The short segments are 100-300bp and can be directly cloned and used for high-throughput sequencing. We identified 83,897 DHSs in 2,343,479 tags across the human genome. Our results indicate that the DHSs identified by the Short DHS assay are consistent with those identified by longer fragments in previous studies.
Project description:Spinocerebellar ataxia type 1 (SCA1) is a polyglutamine (polyQ) repeat neurodegenerative disease in which a primary site of pathogenesis are cerebellar Purkinje cells. In addition to polyQ expansion of ataxin-1 protein (ATXN1), phosphorylation of ATXN1 at the serine 776 residue (ATXN1-pS776) plays a significant role in protein toxicity. Utilizing a biochemical approach, pharmacological agents and cell-based assays, including SCA1 patient iPSC-derived neurons, we examine the role of Protein Kinase A (PKA) as an effector of ATXN1-S776 phosphorylation. We further examine the implications of PKA-mediated phosphorylation at ATXN1-S776 on SCA1 through genetic manipulation of the PKA catalytic subunit Cα in Pcp2-ATXN1[82Q] mice. Here we show that pharmacologic inhibition of S776 phosphorylation in transfected cells and SCA1 patient iPSC-derived neuronal cells lead to a decrease in ATXN1. In vivo, reduction of PKA-mediated ATXN1-pS776 results in enhanced degradation of ATXN1 and improved cerebellar-dependent motor performance. These results provide evidence that PKA is a biologically important kinase for ATXN1-pS776 in cerebellar Purkinje cells.
Project description:RGS10L phosphorylatin site was determined. Trypsin is not good for generating a peptide containing the potential site, and the initial study was done using the intact protein. From the Top-Down study, the phosphorylatin site of the A->S variant was ambiguous. The firnal confirmation was done using AspN digest.
Project description:We present here a novel approach called Reduced Representation 5-Hydroxymethylcytosine Profiling (RRHP), which exploits ?-glucosyltransferase (?-GT) to inhibit restriction digestion at adapters ligated to a genomic library, such that only fragments presenting glucosylated 5hmC residues at adapter junctions will be amplified and sequenced. This assay profiles 5hmC sites with single-base resolution in a strand-specific manner. The absence of harsh chemical conversion steps allows for sequencing of native DNA with less inputs, enhancing both sequencing quality and mapping efficiency. Most importantly, the method proves highly reproducible and is a positive display method, sensitive enough to interrogate 5hmC sites with low abundance. When combined with existing RRBS data, it allows simultaneous comparison of 5mC and 5hmC at specific site. developing a new assay for genomic profiling of 5hmC
Project description:Using the estrogen receptor alpha (ERalpha) as a model ligand inducible transcription factor, we sought to explicitly define parameters that determine transcription factor binding site selection on a genomic scale in an inducible system that minimizes confounding chromatin effects by the transcription factor itself. By examining several genetic and epigenetic parameters, we find that an energetically favorable estrogen response element (ERE) motif sequence, evidence of occupancy of a "pioneering" transcription factor FOXA1, the presence of the enhancer mark, H3K4me1, and an open chromatin configuration (FAIRE) at the pre-ligand state provide specificity for ER binding. Genome-wide ChIP-sequencing was done in MCF-7 cancer cell line for the following histone H3 modifications: monomethylation H3K4me1, trimethylation H3K4me3, H3K9me3, H3K27me3, acetylation H3K9ac, H3K14ac. In addition sequencing of RNA Pol II was done at same treatment conditions (E2 and DMSO). In addition, we assessed the chromatin configuration of ERα binding sites by deeply sequencing fragments isolated by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) (Giresi et al, 2007) which enriches for nucleosome free genomic DNA in the aqueous phase of a phenol extraction. The analysis histone modifications in MCF-7 cancer cells was done by ChIP-seq data obtained either with E2 stimulation or without stimulation using vehicle as a control. Using the ERα binding sites defined by ChIP-seq (separate submission), we analyzed the population characteristics of the chromatin configuration of the ERα binding sites. To this end, we performed ChIP-seq analysis for the occupancy configuration of each of the following marks before and after E2 exposure: RNA Pol II, the activation marks H3K4me1, H3K4me3, H3K9ac and H3K14ac, and the repression marks H3K9me3 and H3K27me3. We assessed the chromatin configuration of ERα binding sites by deeply sequencing fragments isolated by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) (Giresi et al, 2007) which enriches for nucleosome free genomic DNA in the aqueous phase of a phenol extraction. The tag count of FAIRE fragments reflects the nucleosome depletion at any given site. RNA Pol II - Cat# ab5408, Abcam; H3K9me3 - Cat# ab8898, Abcam; H3K27me3 - Cat# 07-449, Upstate Biotechnology Inc.; H3K4me1 - Cat# ab8895, Abcam; H3K4me3 - Cat# ab8580, Abcam; H3K9ac - Cat# 07-352, Upstate Biotechnology Inc.; H3K14ac - Cat# 07-353, Upstate Biotechnology Inc.
Project description:Using the estrogen receptor alpha (ERalpha) as a model ligand inducible transcription factor, we sought to explicitly define parameters that determine transcription factor binding site selection on a genomic scale in an inducible system that minimizes confounding chromatin effects by the transcription factor itself. By examining several genetic and epigenetic parameters, we find that an energetically favorable estrogen response element (ERE) motif sequence, evidence of occupancy of a "pioneering" transcription factor FOXA1, the presence of the enhancer mark, H3K4me1, and an open chromatin configuration (FAIRE) at the pre-ligand state provide specificity for ER binding. Genome-wide ChIP-sequencing was done in MCF-7 cancer cell line for the following histone H3 modifications: monomethylation H3K4me1, trimethylation H3K4me3, H3K9me3, H3K27me3, acetylation H3K9ac, H3K14ac. In addition sequencing of RNA Pol II was done at same treatment conditions (E2 and DMSO). In addition, we assessed the chromatin configuration of ERα binding sites by deeply sequencing fragments isolated by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) (Giresi et al, 2007) which enriches for nucleosome free genomic DNA in the aqueous phase of a phenol extraction. The analysis histone modifications in MCF-7 cancer cells was done by ChIP-seq data obtained either with E2 stimulation or without stimulation using vehicle as a control. Using the ERα binding sites defined by ChIP-seq (separate submission), we analyzed the population characteristics of the chromatin configuration of the ERα binding sites. To this end, we performed ChIP-seq analysis for the occupancy configuration of each of the following marks before and after E2 exposure: RNA Pol II, the activation marks H3K4me1, H3K4me3, H3K9ac and H3K14ac, and the repression marks H3K9me3 and H3K27me3. We assessed the chromatin configuration of ERα binding sites by deeply sequencing fragments isolated by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) (Giresi et al, 2007) which enriches for nucleosome free genomic DNA in the aqueous phase of a phenol extraction. The tag count of FAIRE fragments reflects the nucleosome depletion at any given site. RNA Pol II - Cat# ab5408, Abcam; H3K9me3 - Cat# ab8898, Abcam; H3K27me3 - Cat# 07-449, Upstate Biotechnology Inc.; H3K4me1 - Cat# ab8895, Abcam; H3K4me3 - Cat# ab8580, Abcam; H3K9ac - Cat# 07-352, Upstate Biotechnology Inc.; H3K14ac - Cat# 07-353, Upstate Biotechnology Inc.
Project description:Using the estrogen receptor alpha (ERalpha) as a model ligand inducible transcription factor, we sought to explicitly define parameters that determine transcription factor binding site selection on a genomic scale in an inducible system that minimizes confounding chromatin effects by the transcription factor itself. By examining several genetic and epigenetic parameters, we find that an energetically favorable estrogen response element (ERE) motif sequence, evidence of occupancy of a "pioneering" transcription factor FOXA1, the presence of the enhancer mark, H3K4me1, and an open chromatin configuration (FAIRE) at the pre-ligand state provide specificity for ER binding. Genome-wide ChIP-sequencing was done in MCF-7 cancer cell line for the following histone H3 modifications: monomethylation H3K4me1, trimethylation H3K4me3, H3K9me3, H3K27me3, acetylation H3K9ac, H3K14ac. In addition sequencing of RNA Pol II was done at same treatment conditions (E2 and DMSO). In addition, we assessed the chromatin configuration of ERα binding sites by deeply sequencing fragments isolated by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) (Giresi et al, 2007) which enriches for nucleosome free genomic DNA in the aqueous phase of a phenol extraction.
Project description:Using the estrogen receptor alpha (ERalpha) as a model ligand inducible transcription factor, we sought to explicitly define parameters that determine transcription factor binding site selection on a genomic scale in an inducible system that minimizes confounding chromatin effects by the transcription factor itself. By examining several genetic and epigenetic parameters, we find that an energetically favorable estrogen response element (ERE) motif sequence, evidence of occupancy of a "pioneering" transcription factor FOXA1, the presence of the enhancer mark, H3K4me1, and an open chromatin configuration (FAIRE) at the pre-ligand state provide specificity for ER binding. Genome-wide ChIP-sequencing was done in MCF-7 cancer cell line for the following histone H3 modifications: monomethylation H3K4me1, trimethylation H3K4me3, H3K9me3, H3K27me3, acetylation H3K9ac, H3K14ac. In addition sequencing of RNA Pol II was done at same treatment conditions (E2 and DMSO). In addition, we assessed the chromatin configuration of ERα binding sites by deeply sequencing fragments isolated by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) (Giresi et al, 2007) which enriches for nucleosome free genomic DNA in the aqueous phase of a phenol extraction.
Project description:The current studies show that JMJD1A is phosphorylated at S265 by protein kinase A (PKA), and this is pivotal to activate expression of the b1-adrenergic receptor gene (Adrb1) and downstream targets including Ucp1. Phosphorylation of JMJD1A increases its interaction with the SWI/SNF nucleosome remodeling complex and DNA-bound PPARg. This complex conferred b-adrenergic-induced JMJD1A recruitment to target sites throughout the genome. Phospho-JMJD1A also facilitated long-range chromatin looping to recruit PPARg-bound distal-enhancers, SWI/SNF, and RNA polymerase close to the Adrb1 locus to activate transcription. Mutation of the PKA-phosphorylation site on JMJD1A abolished interactions with SWI/SNF without affecting demethylase activity suggesting the two functions are independent of each other. Our results show that JMJD1A demethylase is also a signal-sensing scaffold that regulates cAMP-responsive transcription via interactions with SWI/SNF and hormone stimulated higher-order chromatin conformational changes. There are 3 samples analyzed. No duplication from each sample. Isoproterenol stimulation at 0hr is used as the relative to fold change in manuscript.
Project description:We present here a novel approach called Reduced Representation 5-Hydroxymethylcytosine Profiling (RRHP), which exploits β-glucosyltransferase (β-GT) to inhibit restriction digestion at adapters ligated to a genomic library, such that only fragments presenting glucosylated 5hmC residues at adapter junctions will be amplified and sequenced. This assay profiles 5hmC sites with single-base resolution in a strand-specific manner. The absence of harsh chemical conversion steps allows for sequencing of native DNA with less inputs, enhancing both sequencing quality and mapping efficiency. Most importantly, the method proves highly reproducible and is a positive display method, sensitive enough to interrogate 5hmC sites with low abundance. When combined with existing RRBS data, it allows simultaneous comparison of 5mC and 5hmC at specific site.