Project description:To identify brain region specific proteins that contribute to brain region specific neurodegeneration, RNA sequencing was performed using cerebellum, striatum and prefrontal cortex tissues from 3-month-old SCA17 knock-in (KI) mice and wild-type (WT) littermates. We find 245 cerebellar specifically dysregulated genes (110 up-regulated genes and 145 down-regulated genes), 133 striatum specifically dysregulated genes (45 up-regulated genes and 88 down-regulated genes) and 17 prefrontal cortex specifically dysregulated genes (4 up-regulated genes and 13 down-regulated genes). Combined with other evidences, we demonstrate that cerebellum-enriched protein INPP5A contributes to selective neuropathology in mouse model of Spinocerebellar ataxias type 17
Project description:We created a novel murine model of Alzheimer's Disease using a knock-in strategy to humanize the sequence of the murine App gene and introduced three familial AD (FAD) mutations, Swedish (Swedish (KM670/671NL), Arctic (E693G)) and Austrian (T712I). We characterized the effects of these genetic modifications on the transcriptome of FACS-isolated microglia from 8-month-old App-SAA mice. Numerous genes were differentially expressed between cells from homozygous App-SAA animals compared to those from WT littermates. For example, we observed up-regulation of Disease-associated microglia (DAM) genes. In contrast, the transcriptome of microglia from heterozygous App-SAA animals broadly resembles that of their WT counterparts.
Project description:RNA samples from the cerebral cortex of APP/PS1 and WT mouse littermates aged 3, 6 and 12 months were analyzed using the Affymetrix Genechip Mouse Gene 1.1 ST Array. The APP-PS1 transgenic mouse express the human mutated forms APPswe and PS1dE9. This is a good model of familial Alzheimer Disease because it reproduces several features of the disease as β-amyloid deposits throughout the brain and exhibit memory impairment by the end of the sixth month and is a simple model to study the molecular pathways. The aim of this study is to identify dysregulation of inflammation pathways in order to understand shifts of inflammation responses with disease progression.
Project description:The etiology of Alzheimer's disease (AD) has been intensively studied. However, little is known about the molecular alterations in early-stage and late-stage AD. Hence, we performed RNA sequencing and assessed differentially expressed genes (DEGs) in the hippocampus of 18-month and 7-month-old APP/PS1 mice. Moreover, the DEGs induced by treatment with nicotine, the nicotinic acetylcholine receptor agonist that is known to improve cognition in AD, were also analyzed in old and young APP/PS1 mice. When comparing old APP/PS1 mice with their younger littermates, we found an upregulation in genes associated with calcium overload, immune response, cancer, and synaptic function; the transcripts of 14 calcium ion channel subtypes were significantly increased in aged mice. In contrast, the downregulated genes in aged mice were associated with ribosomal components, mitochondrial respiratory chain complex, and metabolism. Through comparison with DEGs in normal aging from previous reports, we found that changes in calcium channel genes remained one of the prominent features in aged APP/PS1 mice. Nicotine treatment also induced changes in gene expression. Indeed, nicotine augmented glycerolipid metabolism, but inhibited PI3K and MAPK signaling in young mice. In contrast, nicotine affected genes associated with cell senescence and death in old mice. Our study suggests a potential network connection between calcium overload and cellular signaling, in which additional nicotinic activation might not be beneficial in late-stage AD
Project description:Raw data from metabolomic and lipidomic analysis of brain homogenates from C57BL/6, APP/PS1, zQ175dn, and a combination of mice models.
Project description:Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aβ) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from APPswe/PS1dE9 (APP/PS1) mice and wildtype littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentally reflect the initial response of microglia to Aβ.
Project description:Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aβ) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from APPswe/PS1dE9 (APP/PS1) mice and wildtype littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentally reflect the initial response of microglia to Aβ.