Project description:Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphoma (PEL). All PEL cell lines are infected with KSHV, and 70% are co-infected with Epstein-Barr Virus (EBV). KSHV reactivation from latency requires promoter-specific transactivation by the KSHV Rta protein through interactions with RBP-Jk (CSL), the cellular DNA binding component of the Notch signal transduction pathway. EBV transformation of primary B cells requires EBV nuclear antigen (EBNA)-2 to interact with RBP-Jk to direct the latent viral and cellular gene expression program. Although KSHV Rta and EBV EBNA-2 both require RBP-Jk for transactivation, previous studies have suggested that RBP-Jk-dependent transactivators do not function identically. We have found that the EBV latent protein LMP-1 is expressed in less than 5% of KSHV+/EBV+ PEL cells, but is induced in an Rta-dependent fashion when KSHV reactivates. KSHV Rta transactivates the EBV latency promoters in an RBP-Jk-dependent fashion and forms a ternary complex with RBP-Jk on the promoters. In B cells that are conditionally transformed by EBV alone, we show that KSHV Rta complements a short-term EBNA2 growth deficiency in an autocrine/paracrine manner. Complementaton of EBNA2-deficiency by Rta depends on RBP-Jk and LMP-1, and Rta transactivation is required for optimal growth of KSHV+/EBV+ PEL lines. Our data suggest that Rta can contribute to EBV-driven cellular growth by transactivating RBP-Jk-dependent EBV latency genes. However, our data also suggest that EBNA2 and Rta induce distinct alterations in the cellular proteomes that contribute to growth of infected cells. EREB2-5 cells were transfected and grown in the presence or absence of β-estradiol, as described. Seven days post-transfection, protein extracts were prepared, and 200 ugs. of each were analyzed using the RayBio Human Apoptosis Antibody Array Kit (RayBiotech) as per manufacturers suggestions. The membranes were exposed to autoradiography film for different times to detect the chemiluminescent signals. Images with signals in linear range were quantitated using the program ImageJ [59]. For each membrane, signals from the negative control spots were averaged, and then subtracted from each of the other spots. A signal was considered valid if its value exceeded both its average local background, and the average of all valid negative control values. Valid signals were normalized using the positive control spots (for cellular BID protein). Fold change in signals for each spot were quantitated by dividing by the valid signals for each corresponding spot on the minus β-estradiol membrane. Average fold change, and standard deviation, were calculated for each protein.
Project description:This project aims at the detection of specific patterns of miRNAs in peripheral blood samples of MS patients. As controls, blood of donors without known affection have been tested. Using the miRNA patterns we hope to detect a diagnostic pattern for the non-invasive diagnosis of MS.
Project description:DNA methylation profiling of NeuN+sorted neuronal nuclei from post-mortem brain tissue of Multiple Sclerosis (MS) patients (n=10) (MS) and non-neurological controls (n=7) (non-MS). Genomic DNA was subjected to conventional BS-treatment as well as oxidative BS (oxBS)-conversion using TrueMethylTM 96 kit of CEGXTM (Cambridge Epigenetix Limited) to allow for subsequent detection of hydroxymethylation (5hmC = BS - oxBS).
Project description:Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphoma (PEL). All PEL cell lines are infected with KSHV, and 70% are co-infected with Epstein-Barr Virus (EBV). KSHV reactivation from latency requires promoter-specific transactivation by the KSHV Rta protein through interactions with RBP-Jk (CSL), the cellular DNA binding component of the Notch signal transduction pathway. EBV transformation of primary B cells requires EBV nuclear antigen (EBNA)-2 to interact with RBP-Jk to direct the latent viral and cellular gene expression program. Although KSHV Rta and EBV EBNA-2 both require RBP-Jk for transactivation, previous studies have suggested that RBP-Jk-dependent transactivators do not function identically. We have found that the EBV latent protein LMP-1 is expressed in less than 5% of KSHV+/EBV+ PEL cells, but is induced in an Rta-dependent fashion when KSHV reactivates. KSHV Rta transactivates the EBV latency promoters in an RBP-Jk-dependent fashion and forms a ternary complex with RBP-Jk on the promoters. In B cells that are conditionally transformed by EBV alone, we show that KSHV Rta complements a short-term EBNA2 growth deficiency in an autocrine/paracrine manner. Complementaton of EBNA2-deficiency by Rta depends on RBP-Jk and LMP-1, and Rta transactivation is required for optimal growth of KSHV+/EBV+ PEL lines. Our data suggest that Rta can contribute to EBV-driven cellular growth by transactivating RBP-Jk-dependent EBV latency genes. However, our data also suggest that EBNA2 and Rta induce distinct alterations in the cellular proteomes that contribute to growth of infected cells.
Project description:We enriched endothelial cells and other bone marrow cells in both fetal and adult stage to investigate Wnt signaling interaction using targeted scRNA-seq analysis. This analysis facilitate identification of sources of Wnt ligands and detection of Wnt receptor expression in bone marrow. The comparison of fetal and adult stage reveals differences of Wnt signaling in fetal and adult BM.
Project description:We performed a retrospective study on CSF from 20 DMT-naïve MS patients to investigate the correlation between intrathecal immune proteins and clinical MS phenotype.
Project description:Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.
Project description:In Saccharomyces cerevisiae impairment of protein phosphatase PP2A-Rts1 leads to temperature and hyperosmotic stress sensitivity, yet the underlying mechanism and the scope of action of the phosphatase in the stress response remain elusive. Using quantitative mass spectrometry-based approaches we have identified a set of putative substrate proteins that show both, hyperosmotic stress- and PP2A-Rts1-dependent changes in their phosphorylation pattern. A comparative analysis with published MS-shotgun data revealed that the phosphorylation status of many of these sites is regulated by the MAPKAP kinase Rck2, suggesting a node of regulation. Detailed gel mobility shift assays and protein-protein interaction analysis strongly suggest that Rck2 activity is directly regulated by PP2A-Rts1 via a SLiM B56-family interaction motif, uncovering a previously unknown mechanism of how PP2A influences the response to hyperosmotic stress in Yeast.