Project description:Global chromatin epigentic profiles of human cancer and NPC cell lines treated with neurodevelopmental compounds, epigenetic compounds and kinase inhibitors.
Project description:The structure of chromatin is critical for many aspects of cellular physiology and is considered to be the primary medium to store epigenetic information. It is defined by the histone molecules that constitute the nucleosome, the positioning of the nucleosomes along the DNA and the non-histone proteins that associate with it. These factors help to establish and maintain a largely DNA sequence-independent but surprisingly stable structure. Chromatin is extensively disassembled and reassembled during DNA replication, repair, recombination or transcription in order to allow the necessary factors to gain access to their substrate. Despite such constant interference with chromatin structure, the epigenetic information is generally well maintained. Surprisingly, the mechanisms that coordinate chromatin assembly and ensure proper assembly are not particularly well understood. Here, we use SWATH-MS to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos. This system allows easy manipulation of distinct aspects of chromatin assembly such as post-translational histone modifications, the levels of histone chaperones and the concentration of distinct DNA binding factors. Our findings support the idea that chromatin assembly factors and factors important for chromatin structure bind chromatin in an ordered manner, which is -at least in part- regulated by histone deacetylation. We are able to identify functional clusters of proteins based on their different binding kinetics. Whereas many proteins bind exclusively during the onset of chromatin assembly, a few proteins show a clear tendency towards matured chromatin.
Project description:Formation of the blood from self-renewing hematopoietic stem cells to terminal lineages necessarily involves epigenomic modifications of the genome to control regulator and signature gene expression. By analysing the global expression profiles of hematopoietic stem cells (HSCs), in vivo differentiated CD4+ T cells and CD19+ B cells as well as in vitro differentiated erythrocyte precursor cells, we identified hundreds of transcripts showing type-specific expression in these cell types. To understand the epigenomic changes related to tissue-specific expression during HSC differentiation, we examined the genome-wide distribution of H3K4me1, H3K4me3, H3K27me1, H3K27me3, histone variant H2A.Z, chromatin remodeler BRG1, and RNA Polymerase II in the same four cell types, as well as embryonic stem cells. Analysis of these datasets revealed that numerous key differentiation genes are primed for expression by Brg1 and Pol II binding, as well as bivalent modifications in the HSCs prior to their expression in downstream differentiated cell types. Much of this bivalency in HSC is retained from embryonic stem cells. After differentiation, these modified regions resolve to active chromatin modification configuration in the specific lineage, while in parallel differentiated lineages the bivalent modification remains; Pol II and Brg1 are lost in closer lineages but bivalency resolves to silent monovalency in more distant lineages. Correlation of tissue-specific gene expression with the epigenomic changes predicts tens of thousands of potential common enhancers and tissue-specific enhancers, which may critically contribute to the expression patterns. We provide a valuable dataset for further understanding the regulatory mechanisms of differentiation and function of blood lineages. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series.