LINCS MCF 10A Common Project: Fixed-time-point sensitivity measures of the MCF 10A breast cell line to 8 small molecule perturbagens. Repeat performed by Scientist A in 2019 to assess reproducibility. Dataset 2 of 2: Calculated dose response metrics.
Project description:Metastasis poses a major challenge in cancer management, including EML4-ALK-rearranged non-small cell lung cancer (NSCLC). As cell migration is a critical step during metastasis, we assessed the anti-migratory activities of several clinical ALK inhibitors in NSCLC cells and observed differential anti-migratory capabilities despite similar ALK inhibition, with brigatinib displaying superior anti-migratory effects over other ALK inhibitors. Applying an unbiased in-situ mass spectrometry-based chemoproteomics approach, we determined the proteome-wide target profile of brigatinib in EML4-ALK+ NSCLC cells. Dose-dependent and cross-competitive chemoproteomics suggested MARK2 and MARK3 as relevant brigatinib kinase targets. Functional validation showed that combined pharmacological inhibition or genetic modulation of MARK2/3 inhibited cell migration. Consistently, brigatinib treatment induced inhibitory YAP1 phosphorylation downstream of MARK2/3. Collectively, our data suggest that brigatinib exhibits unusual cross-phenotype polypharmacology as despite similar efficacy for inhibiting EML4-ALK-dependent cell proliferation as other ALK inhibitors, it more effectively prevented migration of NSCLC cells due to co-targeting of MARK2/3.
Project description:We implemented an integrative systems-level analysis of multi-region postmortem human brain proteomics derived from the Religious Order and Rush Memory and Aging Project (ROSMAP) to identify proteins and pathways significantly altered in resilient cases. ROSMAP is an information-rich longitudinal cohort-based study in which participants enroll without dementia, undergo annual cognitive and clinical assessments and donate their brains at death (12). Multiplex tandem mass tag mass spectrometry (TMT-MS)-based proteomic data was implemented for a correlation network analysis. Data from an independent brain proteome wide association study (PWAS) of cognitive trajectory was integrated with the brain network to robustly prioritize protein communities associated with cognitive resilience. This revealed proteins linked to synaptic biology and cellular energetics. Neuritin (NRN1) was prioritized as a hub that co-expressed with a community of proteins with high correlation to cognitive stability in life and is known for important roles in synaptic maturation and stability.
Project description:Lung cancer is associated with high prevalence and mortality, and despite significant successes with targeted drugs in genomically defined subsets of lung cancer and immunotherapy, the majority of patients currently does not benefit from these therapies. Through a targeted drug screen, we found the recently approved multi-kinase inhibitor midostaurin to have potent activity in several lung cancer cells independent of its intended target, PKC, or a specific genomic marker. To determine the underlying mechanism of action we applied a layered functional proteomics approach and a new data integration method. Using chemical proteomics, we identified multiple midostaurin kinase targets in these cells. Network-based integration of these targets with quantitative tyrosine and global phosphoproteomics data using protein-protein interactions from the STRING database suggested multiple targets are relevant for the mode of action of midostaurin. Subsequent functional validation using RNA interference and selective small molecule probes showed that simultaneous inhibition of TBK1, PDK1 and AURKA was required to elicit midostaurin’s cellular effects. Immunoblot analysis of downstream signaling nodes showed that combined inhibition of these targets altered PI3K/AKT and cell cycle signaling pathways that in part converged on PLK1. Furthermore, rational combination of midostaurin with the more potent PLK1 inhibitor BI2536, which is in advanced clinical trials, elicited strong synergy. Our results demonstrate that combination of complementary functional proteomics approaches and subsequent network-based data integration can reveal novel insight into the complex mode of action of multi-kinase inhibitors, actionable targets for drug discovery and cancer vulnerabilities. Finally, we illustrate how this knowledge can be utilized for the rational design of synergistic drug combinations with high potential for clinical translation.
Project description:Purpose: To examine and characterize the expression profile of genes expressed at the neuromuscular junctions (NMJs) of extraocular muscles (EOMs) in comparison to the NMJs of tibialis anterior muscle (TA). Methods: Adult rat rectus EOMs and TAs were dissected, flash-frozen, serially sectioned and stained for acetylcholinesterase to identify NMJs. Approximately 6000 NMJs for EOM (EOMsyn) and 6000 NMJs for TA (TAsyn) and equal amounts of NMJ-free fiber regions (EOMfib, TAfib) and underlying myonuclei were captured using laser capture microdissection (LCM). RNA was isolated, processed and used for microarray-based expression profiling. Profiles were generated for genes differentially expressed at synaptic and non-synaptic regions of TA (TAsyn vs TAfib) and EOM (EOMsyn vs EOMfib) using a false discovery rate (FDR) of 5% as well as an 'interaction list' revealing the most significantly differentially expressed genes at an FDR of 1%. We validated the profiles by real-time quantitative reverse transcription-polymerase chain reaction (qPCR). Results: The regional transcriptomes associated with NMJ of EOMs and TAs were identified. We found 275 genes that were preferentially expressed in EOMsyn and 230 known transcripts that were preferentially expressed in TAsyn; 288 of the transcripts were common to both synapses; these included well-known, evolutionarily conserved, synaptic markers (e.g. nicotinic Acetylcholine receptor (ACHR) alpha and epsilon subunits, nestin) as well as a large number of novel genes. Conclusion: Transcriptome level differences exist between EOM synaptic regions and TA synaptic regions. Our definition of the synaptic transcriptome provides insight into the mechanism of formation and functioning of the unique synapses of EOM and their differential involvement in diseases noted in the EOM allotype. Tissue preparation: A total of 4 rats were killed by CO2 inhalation. The bony orbit was removed from the skull and opened at the lamina cribrosa. The globe with the four recti EOMs still attached was carefully dissected from the bony orbit. The eyeball with muscles was placed on cryomolds, covered with OCT tissue embedding medium (Tissue-Tek: Sakura Finetek, Tokyo, Japan) and flash-frozen in isopentane, cooled in liquid nitrogen and stored at -80 degreeC. The tibialis anterior (TA) muscles of all rats were dissected and frozen in the same way. The EOM and TA were then cut transversely into 10 um sections using a Microm HM 500 cryostat (Zeiss, Oberkochen, Germany), mounted on PEN (poly-ethylene-naphthalene) Membrane Slides (Arcturus) and refrozen immediately. Unfixed sections were stored at -80 degreeC until needed. Section staining: Sections for LCM were stained for acetylcholinesterase based on the method of Karnowsky and Roots to visualize NMJ. Palm microdissection: The PALM MicroBeam System was used for microdissection and for catapulting isolated tissue into a microfuge cap containing 80 ul RLT-Lysis Buffer (Quiagen). Approximately 1000 NMJ and equal amount of non-synaptic regions were collected for each muscle.
Project description:The mesophilic methanogenic archaeal model organism Methanosarcina mazei strain Gö1, is crucial for climate and environmental research due to its ability to produce methane from H2 plus CO2, acetate, and methylamines. Here, we established the first Ribo-seq protocol for M. mazei strain Gö1 under two growth conditions (nitrogen sufficiency (+N) versus nitrogen limitation (-N)). Translation of 93 previously annotated and 311 novel small open reading frames (sORFs), coding for proteins ≤ 70 amino acids in length was predicted with high confidence based on Ribo-seq data. Epitope tagging followed by immunoblotting analysis confirmed the translation of 12 out of 15 selected novel sORFs, the remaining three were validated by LC-MS-MS analysis. In total, LC-MS-MS analysis validated translation for 60 annotated sORFs and 26 novel sORFs. A comprehensive differential expression analysis revealed that 29 of 311 novel sORFs were differentially regulated in response to nitrogen availability at the transcriptional and 49 at the translational level. Several reported sRNAs are now emerging as dual-functional sRNAs, including sRNA154, the central regulatory sRNA in regulation of nitrogen metabolism. Numerous of the novel sORFs identified in this study are conserved in Methanosarcina species, some of which showed a phenotype when overproduced, pinpointing important physiological functions. Overall, the comprehensive analysis opens a new avenue to start elucidating the function(s) of small proteins in M. mazei.