Project description:Peptide and protein identification remains challenging in organisms with poorly annotated or rapidly evolving genomes, as are commonly encountered in environmental or biofuels research. Such limitations render tandem mass spectrometry (MS/MS) database search algorithms ineffective as they lack corresponding sequences required for peptide-spectrum matching. We address this challenge with the spectral networks approach to (1) match spectra of orthologous peptides across multiple related species and then (2) propagate peptide annotations from identified to unidentified spectra. We here present algorithms to assess the statistical significance of spectral alignments (Align-GF), reduce the impurity in spectral networks, and accurately estimate the error rate in propagated identifications. Analyzing three related Cyanothece species, a model organism for biohydrogen production, spectral networks identified peptides from highly divergent sequences from networks with dozens of variant peptides, including thousands of peptides in species lacking a sequenced genome. Our analysis further detected the presence of many novel putative peptides even in genomically characterized species, thus suggesting the possibility of gaps in our understanding of their proteomic and genomic expression. A web-based pipeline for spectral networks analysis is available at http://proteomics.ucsd.edu/software.
Project description:Advances in tandem mass spectrometry (MS/MS) steadily increase the rate of generation of MS/MS spectra. As a result, the existing approaches that compare spectra against databases are already facing a bottleneck, particularly when interpreting spectra of modified peptides. Here we explore a concept that allows one to perform an MS/MS database search without ever comparing a spectrum against a database. We propose to take advantage of spectral pairs, which are pairs of spectra obtained from overlapping (often nontryptic) peptides or from unmodified and modified versions of the same peptide. Having a spectrum of a modified peptide paired with a spectrum of an unmodified peptide allows one to separate the prefix and suffix ladders, to greatly reduce the number of noise peaks, and to generate a small number of peptide reconstructions that are likely to contain the correct one. The MS/MS database search is thus reduced to extremely fast pattern-matching (rather than time-consuming matching of spectra against databases). In addition to speed, our approach provides a unique paradigm for identifying posttranslational modifications by means of spectral networks analysis.
Project description:Spectral library search can enable more sensitive peptide identification in tandem mass spectrometry experiments. However, its drawbacks are the limited availability of high-quality libraries and the added difficulty of creating decoy spectra for result validation. We describe MS Ana, a new spectral library search engine that enables high sensitivity peptide identification using either curated or predicted spectral libraries as well as robust false discovery control through its own decoy library generation algorithm. MS Ana identifies on average 36% more spectrum matches and 4% more proteins than database search in a benchmark test on single-shot human cell-line data. Further, we demonstrate the quality of the result validation with tests on synthetic peptide pools and show the importance of library selection through a comparison of library search performance with different configurations of publicly available human spectral libraries.
Project description:Shotgun proteomics experiments are dependent upon database search engines to identify peptides from tandem mass spectra. Many of these algorithms score potential identifications by evaluating the number of fragment ions matched between each peptide sequence and an observed spectrum. These systems, however, generally do not distinguish between matching an intense peak and matching a minor peak. We have developed a statistical model to score peptide matches that is based upon the multivariate hypergeometric distribution. This scorer, part of the "MyriMatch" database search engine, places greater emphasis on matching intense peaks. The probability that the best match for each spectrum has occurred by random chance can be employed to separate correct matches from random ones. We evaluated this software on data sets from three different laboratories employing three different ion trap instruments. Employing a novel system for testing discrimination, we demonstrate that stratifying peaks into multiple intensity classes improves the discrimination of scoring. We compare MyriMatch results to those of Sequest and X!Tandem, revealing that it is capable of higher discrimination than either of these algorithms. When minimal peak filtering is employed, performance plummets for a scoring model that does not stratify matched peaks by intensity. On the other hand, we find that MyriMatch discrimination improves as more peaks are retained in each spectrum. MyriMatch also scales well to tandem mass spectra from high-resolution mass analyzers. These findings may indicate limitations for existing database search scorers that count matched peaks without differentiating them by intensity. This software and source code is available under Mozilla Public License at this URL: http://www.mc.vanderbilt.edu/msrc/bioinformatics/.
Project description:By circumventing the need for a pure colony, MALDI-TOF mass spectrometry of bacterial membrane glycolipids (lipid A) has the potential to identify microbes more rapidly than protein-based methods. However, currently available bioinformatics algorithms (e.g., dot products) do not work well with glycolipid mass spectra such as those produced by lipid A, the membrane anchor of lipopolysaccharide. To address this issue, we propose a spectral library approach coupled with a machine learning technique to more accurately identify microbes. Here, we demonstrate the performance of the model-based spectral library approach for microbial identification using approximately a thousand mass spectra collected from multi-drug-resistant bacteria. At false discovery rates < 1%, our approach identified many more bacterial species than the existing approaches such as the Bruker Biotyper and characterized over 97% of their phenotypes accurately. As the diversity in our glycolipid mass spectral library increases, we anticipate that it will provide valuable information to more rapidly treat infected patients.
Project description:Many protein interaction domains bind short peptides based on canonical sequence consensus motifs. Here we report the development of a peptide array-based proteomics tool to identify proteins directly interacting with ligand peptides from cell lysates. Array-formatted bait peptides containing an amino acid-derived cross-linker are photo-induced to crosslink with interacting proteins from lysates of interest. Indirect associations are removed by high stringency washes under denaturing conditions. Covalently trapped proteins are subsequently identified by LC-MS/MS and screened by cluster analysis and domain scanning. We apply this methodology to peptides with different proline-containing consensus sequences and show successful identifications from brain lysates of known and novel proteins containing polyproline motif-binding domains such as EH, EVH1, SH3, WW domains. These results suggest the capacity of arrayed peptide ligands to capture and subsequently identify proteins by mass spectrometry is relatively broad and robust. Additionally, the approach is rapid and applicable to cell or tissue fractions from any source, making the approach a flexible tool for initial protein-protein interaction discovery.
Project description:BACKGROUND: Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. RESULTS: We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. CONCLUSION: We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein network available from BioGRID or specified by the user.
Project description:MotivationLiquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissociation tandem mass spectrometry.ResultsA preliminary test of the algorithm with 45 lipids from a subset of lipid classes shows both high sensitivity and specificity.
Project description:BACKGROUND: Construction of a reliable network remains the bottleneck for network-based protein function prediction. We built an artificial network model called protein overlap network (PON) for the entire genome of yeast, fly, worm, and human, respectively. Each node of the network represents a protein, and two proteins are connected if they share a domain according to InterPro database. RESULTS: The function of a protein can be predicted by counting the occurrence frequency of GO (gene ontology) terms associated with domains of direct neighbors. The average success rate and coverage were 34.3% and 43.9%, respectively, for the test genomes, and were increased to 37.9% and 51.3% when a composite PON of the four species was used for the prediction. As a comparison, the success rate was 7.0% in the random control procedure. We also made predictions with GO term annotations of the second layer nodes using the composite network and obtained an impressive success rate (>30%) and coverage (>30%), even for small genomes. Further improvement was achieved by statistical analysis of manually annotated GO terms for each neighboring protein. CONCLUSIONS: The PONs are composed of dense modules accompanied by a few long distance connections. Based on the PONs, we developed multiple approaches effective for protein function prediction.